Group Publications

Articles in refereed journals:

1.    Zhu, L., and Weinbaum, S.. A model for heat transfer from embedded blood vessels in two-dimensional tissue preparations. ASME Journal of Biomechanical Engineering, 117:64-73, 1995. [PDF]
2.    Zhu, L., Lemons, D. E., and Weinbaum, S.. A new approach for prediction the enhancement in the effective conductivity of perfused muscle tissue due to hyperthermia. Annals of Biomedical Engineering, 23:1-12, 1995.
3.    Zhu, L., Lemons, D. E., and Weinbaum, S.. Microvascular thermal equilibration in rat cremaster muscle.  Annals of Biomedical Engineering, 24:109-123, 1996. [PDF]
4.    Weinbaum, S., Xu, L. X., Zhu, L., and Ekpene, A.. A new fundamental bioheat equation for muscle tissue, part I: blood perfusion term. ASME Journal of Biomechanical Engineering, 121:1-12, 1997. [PDF]
5.    Zhu, L., Xu, L. X., and Chencinski, N..  Quantification of the 3-d electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model. IEEE Transaction in Biomedical Engineering, Vol.45, pp.1163-1172, 1998. [PDF]
6.    Xu, L. X., Zhu, L., and Holmes, K. R..  Thermoregulation in the canine prostate during transurethral microwave hyperthermia, part I: temperature response. International Journal of Hyperthermia, 14:29-37, 1998. [PDF]
7.    Xu, L. X., Zhu, L., and Holmes, K. R..  Thermoregulation in the canine prostate during transurethral microwave hyperthermia, part II: blood flow response. International Journal of Hyperthermia, 14:65-73, 1998. [PDF]
8.    Xu, L. X., Zhu, L., and Holmes, K.R.. Blood perfusion measurements in the canine prostate during transurethral hyperthermia.Annals of The New York Academy of Sciences, 858:21-29, 1998. [PDF]
9.    Zhu, L., and Xu, L. X.. Evaluation of the effectiveness of transurethral radio frequency hyperthermia in the canine prostate: temperature distribution analysis.  ASME Journal of Biomechanical Engineering, 121(6):584-590, 1999.
10.  Zhu, L.. Theoretical evaluation of contributions of both radial heat conduction and countercurrent heat exchange in selective brain cooling in humans. Annals of Biomedical Engineering, 28:269-277, 2000. [PDF]
11.  Liu, J., Zhu, L., and Xu, L. X.. Studies on the 3-D temperature transients in the canine prostate during transurethral microwave thermal therapy. ASME Journal of Biomechanical Engineering, 122:372-379, 2000. [PDF]
12.  Flower, R.F., von Kerczek, C., Zhu, L., Earnest, A., Eggleton, C., and Topoleski, L.D.T..  Theoretical investigation of the role of choriocapillaris blood flow in treatment of sub-foveal choroidal neovascularization associated with age-related macular degeneration.  American Journal of Ophthalmology, 132:85-93, 2001. [PDF]
13.  Zhu, L., and Diao, C.. Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Medical & Biological Engineering & Computing, 39:681-687, 2001. [PDF]
14.  Zhu, L., Xu, L.X., He, Q., and Weinbaum, S.. A new fundamental bioheat equation for muscle tissue, part II: temperature of SAV vessels. ASME Journal of Biomechanical Engineering, 124:121-132, 2002. [PDF]
15.  He, Q., Zhu, L., Weinbaum, S., and Lemons, D. E.. Experimental measurements of temperature variations along paired vessels from 200 to 1000 μm in diameter in rat hind leg. ASME Journal of Biomedical Engineering, 124:656-661, 2002. [PDF]
16.  Bommadevera, M., and Zhu, L. Temperature difference between the body core and the arterial blood supplied to the brain during hyperthermia or hypothermia in humans.  Biomechanics and Modeling in Mechniobiology, 1(2):137-149, 2002. [PDF]
17. Diao, C., Zhu, L., and Wang, H.. Cooling and rewarming for brain ischemia or injury: theoretical analysis.  Annals of Biomedical Engineering, 31:346-353, 2003. [PDF]
18. He, Q., Zhu, L., and Weinbaum, S.. Effect of blood flow on thermal equilibration and venous rewarming.  Annals of Biomedical Engineering. 31:659-666, 2003. [PDF]
19. Zhu, L., Pang, L., and Xu, L. X.  “Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy,” Biomechanics and Modeling in Mechniobiology, 4(1):1-9, 2005. [PDF]
20. Zhu, L., Zheng, Y., von Kerczek, C., L. T. D. Topoleski, and Flower, R. W. “Feasibility of extracting velocity distribution in choriocapillaris in human eyes from ICG dye angiograms,” ASME Journal of Biomechanical Engineering, 128(2):203-209, 2006. [PDF]

21.  Diao, C., and Zhu, L.. Temperature distribution and blood flow response in rat brain during selective brain cooling. Medical Physics. 33(7):2565-2573, 2006. [PDF]

22.  Banerjee, R. K., Zhu, L., Gopalakrishnan, P., and Kazmierczak, M. J.. Influence of laser parameters on selective retinal treatment using single-phase heat transfer analyses.  Medical Physics. 34(5):1828-1841, 2007. [PDF]

23.  Wang, Y., and Zhu, L.. Selective brain hypothermia induced by an interstitial cooling device in human neck: theoretical analyses. Eur. J. Applied Physiology. 101(1):31-40, 2007. [PDF]

24.  Zhu, L., and Rosengart, A. J.. Cooling penetration into normal and injured brain via intraparenchymal brain cooling probe: theoretical analyses. Heat Transfer Engineering.  29(3):284-294, 2008. [PDF]

25.  Zhu, L., Banerjee, R. K., Salloum, M., Bachmann, A. J., and Flower, R. W.. Temperature distribution during ICG dye-enhanced laser photocoagulation of feeder vessels in treatment of AMD-related choroidal neovascularization (CNV). ASME Journal of Biomechanical Engineering. 130(3):031010 (1-10), 2008. [PDF]

26.  Wang, Y., Zhu, L., and Rosengart, A. J.. Targeted brain hypothermia induced by an interstitial cooling device in the rat neck: experimental study and model validation. International Journal of Heat and Mass Transfer, 51:5662-5670, 2008. [PDF]

27.  Salloum, M., R. Ma, D. Weeks, and Zhu, L.. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel.  International Journal of Hyperthermia, 24(4):337-345, 2008. [PDF]

28.  Salloum, M., R. Ma, and Zhu, L.. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 24(7):589-601, 2008. [PDF]

29.  Rosengart, A. J., Zhu, L., Schappeler, T., and Goldenberg, F. D.. Fever control in hospitalized stroke patients using simple intravenous fluid regimens – a theoretical evaluation.  Journal of Clinical Neuroscience, 16(1):51-55, 2009. [PDF]

30.  Tang, W., Tasch, U., Neerchal, N. K., Zhu, L., and Yarowsky, P.. Measuring early pre-symptomatic changes in locomotion of SOD1-G93A rats – a rodent model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience Methods, 176(2): 254-262, 2009. [PDF]

31.  Salloum, M., Ma, R., and Zhu, L.. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern. International Journal of Hyperthermia, 25(4):311-323, 2009. [PDF]

32.  Zhu, L., Schappeler, T., Cordero-Tumangday, C., and Rosengart, A. J.. Thermal interactions between blood and tissue: development of a theoretical approach in predicting body temperature during blood cooling/rewarming. Advances in Numerical Heat Transfer, vol. 3, 197-219, 2009. [PDF]

33.  Diller, K. and Zhu, L.. Hypothermia therapy for brain injury. Annual Review of Bioengineering. 11:135-162, 2009.

34.  Zhu, L., Tolba, M., Arola, D., Salloum, M. and Meza, F.. Evaluation of effectiveness of ER,CR:YSGG laser for root canal disinfection: Theoretical simulation of temperature elevations in root dentin. Journal of Biomechanical Engineering, 131(7): 071004(1-8), 2009. [PDF]

35.  Smith, K., and Zhu, L.. Theoretical evaluation of a simple cooling pad in inducing hypothermia in spinal cord following traumatic injury.  Medical and Biological Engineering & Computing, 48(2):167-175, 2010. [PDF]

36.  Smith, K., and Zhu, L.. Brain hypothermia induced by cooled spinal fluid using a cooling pad: theoretical analyses. Medical and Biological Engineering & Computing, 48(8):783-789, 2010. [PDF]

37.  Attaluri, A., Huang, Z., and Zhu, L.. Evaluation of an interstitial cooling device for carotid arterial cooling using tissue equivalent gel phantom. J. Thermodynamic Sciences and Engineering Applications, 2(1):011007(1-5), 2010. [PDF]

38.  Su, D., Ma, R., Salloum, M., and Zhu, L.. Multiscale study of nanoparticle deposition on cell surface during an injection process.  Medical and Biological Engineering & Computing, 48:853-863, 2010. [PDF]

39.  Zhu, L.. Recent developments in biotransport. ASME Journal of Thermodynamic Sciences and Engineering Applications, 2(4):040801(1-11), 2010. [PDF]

40.  Attaluri, A., Ma, R., and Zhu, L.. Using microCT imaging technique to quantify heat generation distribution induced by magnetic nanoparticles for cancer treatments. ASME Journal of Heat Transfer, 133(1):011003(1-5), 2011. [PDF]

41.  Attaluri, A., Ma, R., Qiu, Y., Li, W., and Zhu, L.. Nanoparticle Distribution and Temperature Elevations in Prostatic Tumors in Mice during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 27(5):491–502, 2011. [PDF]

42.  Su, D., Ma, R., and Zhu, L.. Numerical study of nanofluid infusion in deformable tissues in hyperthermia cancer treatment.  Medical and Biological Engineering & Computing, DOI 10.1007/s11517-011-0819-y, 2011. [PDF]

43.  Su, D., Ma, R., and Zhu, L.. Numerical study of liquid composite molding using smoothed particle hydrodynamics method”, Special Topics & Reviews, 2(3):205-216, 2011. [PDF]

44.  Ma, R., Su, D., and Zhu, L.. Multiscale simulation of nanopartical transport in deformable tissue during an infusion process in hyperthermia treatments of cancers. In Nanoparticle Heat Transfer and Fluid Flow, Computational & Physical Processes in Mechanics & Thermal Science Series, Volume 4, edited by W. J. Minkowycz, E Sparrow and J. P. Abraham, CRC Press, Taylor & Francis Group, DOI: 10.1201/b12983-4, 2012. [PDF]

45.  Gill, J., Arola, D., Fouad, A., and Zhu, L.. Design of Laser Treatment Protocols for Bacterial Disinfection in Root Canals Using Theoretical Modeling and MicroCT Imaging. ASME J. Thermodynamic Sciences and Engineering Applications, 4:031011(1-9), 2012. [PDF]

46.  Manuchehrabadi, N., Attaluri, A., Cai, H., Edziah, R., Lalanne, E., Bieberich, C., Ma, R., Johnson, A. M., and Zhu, L.. MicroCT Imaging and In Vivo Temperature Elevations in Implanted Prostatic Tumors in Laser Photothermal Therapy Using Gold Nanorods. ASME Journal of Nanotechnology in Engineering and Medicine, 3:021003(1-7), 2012. [PDF]

47. Zhu, L., and Sarntinoranont, M.. Nano-Therapeutics and Nano-Imaging in Biotransport. ASME Journal of Nanotechnology in Engineering and Medicine, 4:010201(1-2), 2013.

48.  Manuchehrabadi, N., Attaluri, A., Cai, H., Edziah, R., Lalanne, E., Bieberich, C., Ma, R., Johnson, A. M., and Zhu, L.. Tumor Shrinkage Studyies and Histological Analyses after Laser Photothermal Therapy Using Gold Nanorods. Journal of Biomedical Engineering Technology, 12: 157-175, 2013. [PDF]

49.  LeBrun, A., Manuchehrabadi, N., Attaluri, A., Wang, F., Ma, R., and Zhu, L.. MicroCT Image Generated Tumor Geometry and SAR Distribution for Tumor Temperature Elevation Simulations in Magnetic Nanoparticle Hyperthermia. International Journal of Hyperthermia, 29: 730-738, 2013. [PDF]

50. Manuchehrabadi, N. Chen, Y., LeBrun, A., Ma, R., and Zhu, L.. Computational simulation of  temperature elevation in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal Therapy. ASME Journal of Biomechanical Engineering, 135: 121007 (1-11), 2013. [PDF]

51. Chamani, A., Mehta, H. P., McDermott, M. K., Djeffal, M., Nayyar, G., Patwardhan, D. V., Attaluri, A., Topoleski, L. D. T., and Zhu, L.. Theoretical simulation of temperature elevations in a joint were simulator during rotations. ASME Journal of Biomechanical Engineering, 136: 021027(1-6), 2014.  [PDF]

52.  Vesnovsky, O., Topoleski, L. D. T., Grossman, L. W., Casamento, J. P., and Zhu, L.. Performance Testing of Fast Read Digital Thermometers. ASME Journal of Medical Devices 8(3), 030905(1-3), 2014. [PDF]

53.  Manuchehrabadi, N., and Zhu, L.. Development of a Computational Simulation Paradigm to Design a Protocol for Treating Prostate Tumor Using Transurethral Laser Photothermal Therapy, International Journal of Hyperthermia, 30(6): 349-361, 2014. [PDF]

54.  Paul, A. K., Zachariah, S., Zhu, L., and Banerjee, R. K.. Predicting core body temperature during cold water immersion and exercise: Application of a tissue-blood interactive whole body model. Numerical Heat Transfer, 68(6):598-618, 2015. [PDF]

55. LeBrun, A., Joglekar, T., Bieberich, C., Ma, R. and Zhu, L.. Identification of Infusion Strategy for Achieving Repeatable Nanoparticle Distribution and Quantifiable Thermal Dosage in Magnetic Nanoparticle Hyperthermia. International Journal of Hyperthermia, 32(2):132-143, 2016. [PDF]

56. LeBrun, A., Ma, R. and Zhu, L.. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. Journal of Thermal Biology, 62:129-137, 2016. [PDF]

57. Bartgis, C., LeBrun, A., Ma, R., and Zhu, L.. Determination of Time of Death in Forensic Science via a 3-D Whole Body Heat Transfer Model. Journal of Thermal Biology, 62:109-115, 2016. [PDF]

58. LeBrun, A., Joglekar, T., Bieberich, C., Ma, R. and  Zhu, L.. Treatment efficacy for validating microCT based theoretical simulation approach in magnetic nanoparticle hyperthermia for cancer treatment ASME Journal of Heat Transfer, 139:051101(1-7), 2017. [PDF]

59. Vesnovsky, O., Zhu, L., Casamento, J. P., Grossman, L. W., and Topoleski, L. D. T.. Evaluating Accuracy of Digital Thermometers Using a Tissue Phantom Mimicking Normal and Fever Environments. ASME Journal of Medical Devices, 10(2), 020913 (1-3), 2016. [PDF]

60. Munuhe, T., LeBrun, A., Zhu, L., and Ma, R.. Using microCT to visualize nanofluid droplet sorption profiles in unsaturated powder beds. Powder Technology, 305:232-240, 2017. [PDF]

61. Alexanderia, A., Zhu, L., Salloum, M., Ma, R., and Yu, M.. Investigation of biotransport in a tumor with uncertain material properties using a non-intrusive spectral uncertainty quantification method. ASME Journal of Biomechanical Engineering, 139:091006(1-110, 2017. [PDF]

62. Manuchehrabadi, N., Zhu, L.. Gold Nanoparticle Based Laser Photothermal Therapy. in Handbook of Thermal Science and Engineering (Editor-in-Chief: Francis A. Kulacki), Section: Heat Transfer in Biology and Biological Systems (Section Editor: Ram Devireddy),  Springer International Publication, New York, 2017. [PDF]

63. LeBrun, A., and Zhu, L.. Magnetic Nanoparticle Hyperthermia in Cancer Treatment: History, Mechanism, Imaging-Assisted Protocol Design, and Challenges. In Theory and Application of Heat Transfer in Cells and Organs, edited by Devashish Shrivastava, Chapter 29, pp. 758-776, John Wiley & Sons Ltd, Hoboken, NJ, 2018, ISBN 9781119127307.

64. Min Zaw, M., Hedrich, W., Munuhe, T., Wang, H., Gadsden, S. A., Zhu, L., Ma, R.. Fabrication of a cell culture plate with a 3D printed mold and thermal analysis of PDMS-based casting process. ASME Journal of Thermal Science and Engineering Applications.10:061002(1-8), 2018. [PDF]

65. Zhu, L.. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. In Molecular, Cellular, and Tissue Engineering in Vascular System, Editors: Bingmei Fu and Neil Wright, Springer, New York, 2018.

66. Vesnovsky, O., Grossman,L. W., Casamento, J. P., Chamani, A., Zhu, L., and Topoleski,L.. Identifying Critical Design Parameters for Improved Body Temperature Measurements: A Clinical Study Comparing Transient and Predicted Temperature Measurements. ASME Journal of Medical Devices, 13 :011005(1-15), 2019. [PDF]

67. Gu, Q., Joglekar, T., Bieberich, C., Ma, R., and Zhu, L.. Nanoparticle Redistribution in PC3 Tumors Induced by Local Heating in Magnetic Nanoparticle Hyperthermia: In Vivo Experimental Study. ASME Journal of Heat Transfer, 141:032402 (1-9), 2019. [PDF]

68. Zhu, L., and Bischof J.. Journal of Biomechanical Engineering Legacy Paper 2018. ASME Journal of Biomechanical Engineering, 141, 070205(1-3), 2019. [PDF]

69. Min Zaw, M., Zhu, L., and Ma, R.. Effect of surface topography on particle deposition from liquid suspensions in channel flow. Fluids, 5:8(1-14), doi:10.3390/fluids5010008, 2020. [PDF]

70. Singh, M., Gu, Q., Ma, R., and Zhu, L.. Heating Protocol Design Affected by Nanoparticles Re-distribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment. ASME Journal of Heat Transfer, 142:072501(1-9), 2020. [PDF]

71. Gu, Q., Liu, S., Saha Ray, A., Florinas, S., Christie, R. J., Daniel, M-C., Bieberich, C., Ma, R., and Zhu, L.. Mild Whole Body Hyperthermia Induced Interstitial Fluid Pressure (IFP) Reduction and Enhanced Nanoparticle Delivery to PC3 Tumors: In Vivo Studies and MicroCT Analyses. ASME Journal of Thermodynamic Sciences and Engineering Applications, 12:061001(1-10), 2020. [PDF]

72. Zhu, L., Eggleton, C., Topoleski, L.D.T., Ma, R. and Madan, D.. Establishing the Need to Broaden Bioengineering Research Exposure and Research Participation in Mechanical Engineering and Its Positive Impacts on Student Recruitment, Diversification, Retention and Graduation: Findings from the UMBC ME S-STEM Scholarship Program ASME Journal of Biomechanical Engineering, 142:111010(1-7), 2020. [PDF]

73. Singh, M., Ma, R., and Zhu, L.. Theoretical Evaluation of Enhanced Gold Nanoparticle Delivery to PC3 Tumors due to Increased Hydraulic Conductivity or Recovered Lymphatic Function after Mild Whole Body Hyperthermia. Medical & Biological Engineering & Computing 59:301–313, 2021. [PFD]

74. Sullivan, S., Seay, N., Zhu, L., Rinaldi, J., Hariharan, P. Vesnovsky, O., Topoleski, L. D. T.. Performance characterization of non-contact infrared thermometers (NCITs) using a black body source. Medical Engineering and Physics, 93:93-99, 2021.

75. Singh, M., Ma, R., and Zhu, L.. Quantitative Evaluation of Effects of Coupled Temperature Elevation, Thermal Damage, and Enlarged Porosity on Nanoparticle Migration in Tumors during Magnetic Nanoparticle Hyperthermia. International Communications of Heat and Mass Transfer, 126:105393, 2021. [PDF]  https://doi.org/10.1016/j.icheatmasstransfer.2021.105393

76. Gu, Q., Dockery, L., Daniel, M.-C., Bieberich, C.J., Ma, R., Zhu, L.. Nanoparticle Delivery in Prostate Tumors Implanted in Mice Facilitated by Either Local or Whole-Body Heating. Fluids 2021, 6, 272. https://doi.org/10.3390/fluids6080272 [PDF]

77. Zhu, L., Sun, S., Topoleski, L.D.T., Eggleton, C., Ma, R., and Deepa, M. Evaluation of STEM engagement activities on the attitudes and perceptions of mechanical engineering s-stem scholars. ASME Journal of Biomechanical Engineering, 143(12): 121006 (1-7), 2021 https://doi.org/10.1115/1.4051715. [PDF]

78. Munuhe, T., Chen, R.-H., Zhu, L., and Ma, R.. Modeling molten droplet spreading and infiltration into non-isothermal thermal barrier coatings. International J. of Heat and Mass Transfer, 182:121942 (1-17), 2022. doi.org/10.1016/j.ijheatmasstransfer.2021.121942

79. Quinn, E., Singh, M., and Zhu, L.. Simulation-based treatment protocol design for damaging breast tumor using laser photothermal therapy. In: Skalli, W., Laporte, S., Benoit, A. (eds) Computer Methods in Biomechanics and Biomedical Engineering II. CMBBE 2023. Lecture Notes in Computational Vision and Biomechanics, Vol 39, pp. 96-104, Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-55315-8_11  [PDF]

80. Gu, Q., and Zhu, L. Heating induced nanoparticle migration and enhanced delivery in tumor treatment using nanotechnology. Bioengineering 2024, 11, 900. https://doi.org/10.3390/bioengineering11090900 [PDF]

81. Naseem, M. J., Ma, R., and Zhu, L. Reducing Flow Resistance via Introduction and Enlargement of Microcracks in Convection Enhanced Delivery (CED) in Porous Tumors. Fluids, 2024, 9(9): 215(1-20), 2024. [PDF] https://doi.org/10.3390/fluids9090215

82. Min Zaw, M., Zhu, L., and Ma, R.. Numerical study of heat transfer enhancement using nano-encapsulated phase change slurries (NPCS) in wavy microchannel heat sinks. Fluids, 9(10), 236, 2024. [PDF] https://doi.org/10.3390/fluids9100236.

 

Chapters in Books:

1. Zhu, L.. Bioheat transfer. Chapter 2 in Standard Handbook of Biomedical Engineering & Design, pp.2.3-2.29, Myer Kutz, editor-in-chief, McGraw-Hill, 2002.

2. Zhu, L.. Heat Transfer Applications in Biological Systems. Chapter 2 in Biomedical Engineering & Design Handbook, Volume 1: Bioengineering Fundamentals. pp. 2.33-2.67, Myer Kutz, editor-in-chief, McGraw-Hill, 2009. [PDF]

3. Zhu, L.. Zhu, L.. Heat Transfer Applications in Biological Systems. Chapter 4 in Biomedical Engineering Fundamentals. pp. 69-116, Myer Kutz, editor, McGraw-Hill, 2022. [PDF]

Conference Proceedings – Peer Reviewed

130 conference papers — Email Dr. Liang Zhu for any reprints.

Conference Abstracts

27 conference abstracts