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Abstract: Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine
energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve
a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle
distribution in tumors. This review is focused on understanding how local or whole-body heat-
ing alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or
optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the
development of nanotechnology in cancer therapy is introduced. Second, the importance of particle
distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is
discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure
to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles
in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor
microenvironments. Experimental observations on how mild local or whole-body heating boosts
systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are
explored. The end of this review provides the current challenges facing clinicians and researchers
in designing effective and safe heating strategies to maximize the delivery of therapeutic agents
to tumors.

Keywords: local heating; whole-body heating; nanoparticle distribution; magnetic nanoparticle
hyperthermia; nanoparticle migration; tumor; drug delivery; enhanced delivery

1. Introduction

It is estimated by the American Cancer Society that more than 2 million new cancer
cases will be diagnosed and 611,720 cancer related deaths occur in 2024 [1]. Traditional treat-
ment methods such as surgery, radiation, and chemotherapy have increased the survival
rate in cancer patients via early diagnosis and intervention with advanced technology. Un-
fortunately, it is still a challenge to damage all tumor tissue at its original site. The remaining
surviving tumor cells may metastasize, contributing to the majority of cancer deaths.

Traditional cancer treatments often involve intravenous injection of therapeutic agents
into the bloodstream. Once a drug is in the interstitial fluid space, diffusion to the tumor
cells away from capillaries is difficult. Although there are different-sized therapeutic agents,
their diffusion coefficients in fluid are usually not high. Recent studies showed that the
diffusion coefficients of various small-molecule drugs are at the order of magnitude of
10−10 m2/s [2]. For large-sized therapeutic agents, their diffusion coefficients are even
smaller. One example is the diffusion coefficient of nanoparticles in unbound interstitial
fluid, which is only 6.7 × 10−11 m2/s [3]. The typical porosity of 0.2 in most tumors
further limits the diffusion coefficient in the interstitial fluid space to approximately 14%
of that in unbound fluid [3]. Other hurdles include the deposition of therapeutic agents
on the surfaces of tumor cells and difficulty entering tumor cells. Thus, although potent
therapeutics have been developed, delivering them to tumors and achieving sufficient
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and optimized drug concentrations in the entire tumor are significant challenges facing
clinicians and bioengineers.

In the past decades, newly developed nanotechnology has advanced cancer treatment
for better patient outcomes. Nanoparticles were studied as heat generators to confine energy
in targeted tumors [4–11], as imaging contrast agents to visualize drug distribution [12–17],
and as drug carriers to maximize drug delivery [17–21]. Among these functions, nanoparti-
cles act as energy absorbers/generators to confine heating in targeted tumor regions while
minimizing collateral thermal damage to surrounding tissue. Laser photothermal therapy,
high-intensity focused ultrasound, and magnetic nanoparticle hyperthermia all utilize
nanoparticles to enhance energy generation in tumors to cause cell damage [17,22–29]. In
drug delivery, therapeutic agents could be attached to the surfaces of nanostructures or
placed inside the hollow space of nanostructures to reduce systemic toxicity. Once the drug
reaches the tumor region, drug release can be implemented and controlled by external
stimulators [30] to achieve a desirable drug concentration for a prolonged time duration,
therefore avoiding an initial concentration burst. In recent years, nanoparticles have been
developed to combine imaging-assisted diagnosis with thermal damage capability [17], or
to use heating to release drugs encapsulated inside hollow particles [30–32]. Advanced
nanoparticles also allow therapeutic agents, targeting moieties, contrast agents, etc., to be
attached to their surfaces to serve multiple functions in cancer treatment [33,34].

Nanoparticle distribution and their concentration in tumors are critical to cancer
treatment. When heating intensity is elevated to a level to cause irreversible damage to
tumor cells in hyperthermia treatment using nanoparticles, a replicable and controllable
nanoparticle distribution is often difficult to achieve. The initial nanoparticle distribution
within a tumor may change due to particle migration; this would further alter the thermal
dosage needed to damage the tumor. In systemic delivery, passive advection and the
diffusion of nanoparticles are negatively impacted by the interstitial fluid pressure (IFP) in
tumors [35,36]. Any approaches including mild heating to change the transport properties
of the interstitial space to allow fluid and particles to easily pass through would enhance
the delivery of therapeutic agents to tumors.

The present work focuses on understanding how local or whole-body heating alters
the transport properties in tumors, therefore leading to enhanced nanoparticle delivery or
optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and
the development of nanotechnology in cancer therapy is introduced. Second, the impor-
tance of particle distribution in one of the hyperthermia approaches using nanoparticles in
damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia
alters interstitial space structure to induce nanoparticle migration in tumors is evaluated.
The next section reviews major obstacles in the systemic delivery of therapeutic agents
to targeted tumors due to unique features of tumor microenvironments. Experimental
observations on how mild local or whole-body heating boosts systemic nanoparticle de-
livery to tumors is presented, and possible physiological mechanisms are explored. At
the end of this review, the current challenges facing healthcare professionals in designing
effective and safe heating strategies to maximize the delivery of therapeutic agents to
tumors are discussed.

2. Development of Nanotechnology in Medicine

Developments in nanotechnology in the past decades have resulted in broader impacts
on society. When particle sizes are at the scale of nanometers, many physical mechanisms
normally not observed at large scales become evident. This is the size scale when quantum
effects cause unique properties of particles. The physical properties of materials at the
nanoscale may differ significantly from those at larger size scales.

The size of nanoparticles could affect their interaction with external energy sources
such as lasers, ultrasound waves, or magnetic fields. Magnetic particles subject to an
alternative magnetic field can also release energy in terms of heat. However, the intensity
of the heat generation rate is influenced by different physical mechanisms when the particle
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size varies. When magnetic nanoparticles are at the micrometer scale, the mechanisms are
primarily hysteresis or Eddy’s heating. Once the particles are at the nanoscale (<100 nm),
they experience superparamagnetism due to Nèel’s relaxation and/or Brownian relax-
ation [19,37]. In the presence of an oscillating electromagnetic field of laser light, when the
natural frequency of the surface plasmon resonance matches the frequency of the incident
laser light, the conduction band of electrons in the metallic (gold or silver) nanoparticle
undergoes a collective coherent resonant oscillation [38]. The excited electrons cool off
rapidly by energy exchange with the nanoparticles inducing heat dissipation to be used
in hyperthermia applications [17,39,40]. This has been widely used in laser photothermal
therapy for confining laser energy absorption in tumors to maximize thermal damage.
Another heating method using nanoparticles is in ultrasound. Recent studies have demon-
strated that temperature elevations were more than doubled in high-intensity focused
ultrasound in targeted tumors when magnetic nanoparticles or gold nanoparticles were
used to enhance ultrasound energy absorption [27–29].

Before nanotechnology, typical therapeutic drugs injected into the bloodstream may
have been captured quickly by the liver, spleen, and kidney. Thus, this results in very low
drug concentrations in the bloodstream to tumors. Developed therapeutic drugs can be
encapsulated inside hollow nanoparticles and these drugs can be released later once they
are inside targeted tumors. Protein–drug conjugated nanoparticles are typically around
50 nm in diameter, resulting in a long half-life in vivo and consequently facilitating their
delivery to the targeted tumor site [33,41,42]. Antibody-based targeting ligands have unique
in vivo properties and high target specificities to certain receptors only overexpressed in
tumors [33,43]. If more drugs can be delivered directly in the targeted tumors via nanocarri-
ers, systemic toxicity to the healthy tissues or organs in the body would be minimized.

Nanoparticles can change the profile of drug release by their unique characteris-
tics. The tumor microenvironment has amplified enzymatic activity, acidic pH, reductive
or oxidative states, and increased reactive oxygen species. In recent years, polymeric
nanoparticles have been developed to take advantage of the changed homeostatic chemical
equilibrium in tumors [44]. These biodegradable polymeric nanoparticles can be triggered
by biochemical stimulations to allow controlled drug release. External physical triggers,
such as the introduction of thermal, electrical, ultrasound, or magnetic energy to tumors,
may cause a rupture of various components in nanocarriers. Previous experiments demon-
strated drug release from liposomes when the tumor temperature was elevated slightly to
39–40 ◦C using localized magnetic or ultrasound heating.

Different kinds of nanoparticles are used in medicine. Liposome-based nanoparticles
are spherical sacs formed by lipid bilayers with diameters varying from 50 to 500 nm [45].
Techniques such as extrusion, sonication, solvent injection, and reverse-phase evaporation
are often used in industry to form liposome-based nanoparticles. One feature of liposome-
based nanoparticles is the encapsulation of hydrophilic drug molecules. Hydrophobic and
amphiphilic [46–49] drugs can be encapsulated into lipid solution before the formation of
the shells of nanoparticles. Temperature-sensitive lipid bilayer spherical shells can rupture
at a specific temperature to release the encapsulated drugs [31,32,50].

Polymeric nanoparticles consist of synthetic polymers to achieve a specific molecular
weight, biodegradability, and hydrophilicity. The synthesis of polymeric nanoparticles
uses nanoprecipitation, electrospray, and emulsification. The unique degradation curves of
polymeric nanoparticles allow manipulation of drug release [51]. For hydrophobic drugs
that would be quickly cleared by the liver or kidney, they can be encapsulated inside
hydrophilic polymers to allow their delivery to targeted tumors [52]. Dendrimeric nanopar-
ticles are another kind of polymer nanoparticle. They are a non-viral vector composed of
polymers with a nanoparticle core of diameter less than 50 nm. Typically, citrate-stabilized
gold nanoparticles are used as the core, followed by a ligand exchange reaction to replace
the citrate molecules with the polymer dendrimer [33,34,53,54]. Dendrimeric nanoparticles
have a unique scaffold structure that allows various combinatorial therapeutic attachments
to serve multifunctional purposes.
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Further, interactions between nanoscale proteins and their receptors may be stud-
ied by visualization of their distributions and movements in cells. Nanoparticles, when
manufactured as fluorescence carriers, may improve the imaging ability of fluorescence
in biology and medicine [17]. In contrast to traditional organic-based fluorescent dyes
and fluorescent proteins, fluorescence-labeled nanoparticles offer improved sensitivity and
photostability. Nanoparticles themselves can also be imaged due to their nanomolar or
micromolar sensitivity range that can be detected via imaging systems. Thus, nanoparticles
with fluorescence imaging capability may contribute significantly to imaging at the cellular
level in cancer treatment.

3. Nanoparticle Distribution in Tumors in Magnetic Nanoparticle Hyperthermia

The primary goal of hyperthermia in cancer treatment is to maximize the power
deposition in targeted tumors. Hyperthermia treatment is typically defined as elevating
tumor temperatures above 43 ◦C for up to several hours to achieve direct tumor cell apop-
tosis or necrosis [55]. In traditional hyperthermia methods such as microwave, laser, and
ultrasound, waves have to penetrate through the superficial layer before they can reach
the targeted tumor. During these processes, a large amount of energy is absorbed by the
superficial layer, leading to collateral thermal damage to the healthy tissue [56]. Recently,
three hyperthermia methods have utilized nanoparticles to confine thermal energy to
tumors. Laser photothermal therapy uses gold nanorods/nanoshells to enhance laser
energy absorption. HIFU (high-intensity focused ultrasound) studies have demonstrated
enhanced ultrasound energy absorption in tumors with the presence of gold nanoparticles
in tumors [27–29]. In magnetic nanoparticle hyperthermia, iron-based nanoparticles serve
as heat generators when subject to an alternating magnetic field [10,11]. In these studies,
nanoparticle distribution within the targeted tumor often determines the efficacy of the
thermal therapy in cell damage. In this section, we focus our review on one of the cancer
treatments using magnetic nanoparticles to damage tumor tissue, with an emphasis on how
local intensive heating changes tumoral transport properties, leading to dynamic particle
migration. The experimental observations and theoretical simulations in magnetic nanopar-
ticle hyperthermia could be applied to other hyperthermia treatments using nanoparticles.
The general approach may also be used in drug delivery or imaging-assisted diagnosis to
manipulate particle migration to desirable locations.

3.1. Heating Mechanisms of Magnetic Nanoparticle Hyperthermia

In magnetic nanoparticle hyperthermia, several physical mechanisms co-exist, and
individual dominations depend on the size of the nanoparticles. The first mechanism is
hysteresis loss in bulk and multi-domain magnetic materials [57]. However, when the
particle size is less than 100 nm, superparamagnetic relaxation is dominant, specifically
Nèel’s relaxation and Brownian relaxation [24,58]. Eddy’s current is another possible
mechanism; however, its contribution is minor compared to other heating mechanisms [24].

3.2. Quantification of Heat Generation Rate Induced by Magnetic Nanoparticles

Previous theoretical study of the specific loss power (SLP) of a single nanoparticle
has been derived to provide an expression to illustrate how the magnetic field strength,
frequency, and the effective relaxation time determine the SLP induced by a single nanopar-
ticle [24]. Recent experimental studies demonstrated that the expression shows the general
trends; however, it may not be accurate when nanoparticles interact with each other, and
with the surrounding tissue [24,59–61]. Thus, experimental measurements are the preferred
approach to quantify the SLP induced by nanoparticles.

The specific absorption rate (SAR), defined as the energy generation rate per unit mass
of the tissue, is related to the SLP, defined as the energy generation rate per unit mass of iron
(unit: W/kg Fe). The SAR value (unit: W/kg tissue) depends not only on the SLP value,
but also on the nanoparticle concentration in the tissue. Volumetric heat generation rate
q′′′ typically used in the Pennes bioheat equation [62] is defined as the energy generation
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rate per unit volume of the tissue and is directly related to the SAR value. The following
equation shows the relationship between SAR and SLP [63]:

SAR = C × SLP (1)

where C is the ratio of the iron mass to the total sample mass and thus can be consid-
ered as the iron mass concentration in gel samples or tissue in magnetic nanoparticle
hyperthermia studies.

Experimental measurements of the SLP varied significantly due to the geometries of
nanoparticles and the strength and frequency of the exposed magnetic field [37,59,63–73].
Etheridge et al. [64] showed that the SLP is approximately 17 W/g of iron when the magnetic
nanoparticles were subjected to an alternating magnetic field of 3 kA/m at a frequency of
215 kHz. When the magnetic field strength was at 40 kA/m at a frequency of 175 kHz, the
SLP was determined to be much larger at 47–54 W/g [69]. LeBrun et al. [59] also quantified
the SLP of a commercially available ferrofluid. It was found that their SLPs varied from 13 to
16 W/g when the nanoparticles were subjected to an alternating magnetic field of 5 kA/m at
190 kHz [59]. An impressive SLP of 104 W/g Fe was measured using a very strong magnetic
field of 20 kA/m at a frequency of 829 kHz, again confirming the dependence of the SLP on
magnetic field strength [70]. A recent study showed that adding a surface coating based on
sodium citrate would double the SLP of Fe3O4 nanoparticles [71]. The latest SLPs are reported
way above 200 W/g Fe when exposed to a magnetic field of 40 kA/m; however, they have a
large frequency of 13.56 MHz [72]. Interestingly, a recent experiment implemented a magnetic
field with a frequency in the GHz range, leading to an ultra-fast temperature rise rate over
100 K/s [73]. The large variations in these measured SLPs demonstrate the importance of
experimental approaches of determining the SLP. Once the nanoparticles are manufactured,
the local nanoparticle concentration distribution C is an important parameter to determine
needed dosage to cause irreversible thermal damage to the entire tumor.

3.3. Experimental Studies in Magnetic Nanoparticle Migration during Hyperthermia

Animal experiments are commonly used before clinical trials to test the treatment
efficacy of magnetic nanoparticle hyperthermia in cancer treatment. These experimental
studies have demonstrated the capability of elevating tumor temperature above 50 ◦C
using a relatively low strength of magnetic field. In one study, a tumor grown from a Tu212
cell line on a mouse was heated easily to 50 ◦C after injecting 0.5 mL of a 5.8% ferrofluid
into the tumor [74]. Similar results were found in xenograft liver tumors (SMMC-7721 cell
line) implanted in mice [75]. Attaluri et al. performed heating experiments [76] on PC3
tumors implanted on mice, using an alternating magnetic field of 5 kA/m, and recorded
temperature elevations above 60 ◦C [76]. In LeBrun et al. [10,11], they designed a heating
protocol of heating for 25 min to PC3 tumors implanted in mice. Their results showed a
complete disappearance of the damaged tumors three days after the heating treatment.
Another research group used multiple sessions of magnetic nanoparticle hyperthermia
on prostate cancer implanted in rats [77]. They observed tumor inhibition with the tumor
growth less than 50% of that in the untreated tumors [77]. Similar tumor growth inhibi-
tion was reported by another group after magnetic nanoparticle hyperthermia treatment
of implanted MiaPaCa02 human xenograft tumors [78], as well as in pancreatic ductal
adenocarcinoma [70]. In Li et al. [79], they reported severe tissue damage in a human
breast tumor (MCF-7 line) implanted in mice after magnetic nanoparticle hyperthermia.
The destroyed tumor cells appeared structurally abnormal with fragmented nuclei. They
also found that the higher the frequency of the exposed alternating magnetic field, the
more significant the cell damage. A recent study [72] developed magnetic graphene oxide
nanoheaters injected into glioma-bearing rats for heating treatment. The authors reported
significant inhibition of tumor growth and tripled survival days in the heating group. These
experimental data typically provided the total amount of nanoparticles in tumors; however,
they rarely reported the nanoparticle distribution in the tumors as well as possible particle
migration during the heating.
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In animal studies, the thermal dosage needed to completely damage tumors might be
affected by the original nanoparticle concentration distribution in the tumors and possible
particle redistribution. It is well known that high-intensity heating usually damages
the blood vessels and cells in tissue. In direct intratumoral injections of nanofluid into
tumors, nanoparticles are driven by the high pressure at the tip of the injecting needle.
Once the injection stops, the nanoparticle distribution is found to have no noticeable
change several hours after the injection, based on previous studies using transparent tissue
equivalent agarose gels. Although local nanoparticle concentration near the injection site is
usually high, the driving force due to diffusion has to overcome other barriers to move the
nanoparticles to low-concentration regions. When tumor cells are completely damaged, the
interstitial fluid space may be enlarged due to rupture of cells which releases inside fluid.
This would increase tumor porosity and allow easier particle diffusion. During heating,
nanoparticle migrations after tissue damage would change the volumetric heat generation
rate that is related to nanoparticle distribution. Designing an effective heating protocol
would require inclusion of dynamic migration in the theoretical simulation.

Experimental evidence of nanoparticle migration in tissue-equivalent agarose gel or
animal tissue has been reported in recent years. One experiment was designed to compare
iron-based magnetic nanoparticle distribution volumes inside agarose gels with or without
local heating [80]. Shown in Figure 1, without a ferro-fluid injection of 0.2 mL, the agarose
gel specimen is semi-transparent, while the gel specimen has a dark-colored spherical
region represented by the presence of injected magnetic nanoparticles. The needle track is
barely observed on the top of the middle panel. The third photo from left shows the same
gel specimen after undergoing heating for 15 min, induced by an alternating magnetic
field of 5 kA/m and frequency of 200 kHz. One can see that the nanoparticles occupy a
bigger volume after the heating. However, since the nanoparticles may not be uniformly
deposited in the gel after infusion, the darker-color region alone is not suitable to quantify
nanoparticle spreading in gels.
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Figure 1. Nanoparticle migration in agarose gels: (left panel) photo of the specimen with or without
ferrofluid injection; (right panel) microCT images of the gel specimen. The right vertical bar represents
the microCT gray scale values. This figure is adopted from the PhD dissertation of the 1st author [81].

A high-resolution microCT imaging system with pixel gray scale values from 0 to
255 was later used to image the density of the same agarose gel specimen with direct
injections of nanoparticles [80,81]. The right panel in Figure 1 illustrates the 3D color
contours of the microCT gray value distribution (top row), and gray value distribution
on the cross-sectional plane A-A (bottom row). Three-dimensional visualization of the
region with nanoparticle presence deviates from a spherical shape. The nanoparticle
distribution inside the gel before heating is not uniform, varying from 220 at the center near
the infusion site to 135 at the periphery. After heating, the region is gets bigger; however,
the nanoparticles are less concentrated than before heating with a more uniform gray scale
value of approximately 190. Based on ten gel specimens, the nanoparticle distribution
volume is calculated as 0.58 ± 0.15 cm3 (mean ± SD, n = 10) using a cutoff gray scale
value of 65, which is the average gray scale value of gels without nanoparticles. Based
on 10 samples, the nanoparticle distribution volume increases after heating by 26% to
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0.73 ± 0.14 cm3. Nanoparticle migration induced by heating was evident since the same
gel specimen was scanned by microCT before and after local heating.

Similarly, nanoparticle distribution as affected by high-intensity local heating could be
studied using a microCT scan of tumor specimens [82]. An ideal situation is to scan the
same tumor with a direct ferro-fluid injection before and after a local heating. This would
require a costly microCT system accommodating a live animal bearing a tumor. In the
past, some researchers used resected tumors with or without local heating and determined
whether there was a statistical significance in the particle distribution volumes between
these two tumor groups.

In one of the previous studies, two groups of resected PC3 tumors with or without
heating were scanned by microCT [82]. Figure 2 gives the MIP (maximum intensity projec-
tion) images of PC3 tumors with an intratumoral nanoparticle injection. The white/gray
clouds in the images represent the presence of nanoparticles in tumors. The three images
on the top row represent a tumor with nanoparticles, but without heating treatment. They
show very high-concentration regions at the tumor center, illustrated by the bright white
regions. The bottom three images are from a tumor subjected to heating for 25 min. One
notices that the nanoparticle deposition regions in the heated tumor are more irregular and
occupy a larger volume than those in the tumor without heating. Since both tumors were
injected with the same amount of iron-based nanoparticles, the larger volume occupied by
the nanoparticles in the heated tumor suggested the possible spreading of nanoparticles
from the central region to tumor periphery during heating. The nanoparticle concentration
in the heated tumor is lower, implied by the less bright white color in the bottom images.
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Figure 2. MIP images of two resected tumors in three projections. The tumors were injected with 0.1
cc ferrofluid. The top panel is from a tumor without heating and the bottom panel is a tumor resected
and imaged after heating for 25 min. This figure is adapted from the PhD dissertation of the first
author [81].

Quantification of the distribution volume of nanoparticles at a specific Hounsfield
range illustrates evidence of particle migration in PC3 tumors. The nanoparticle distri-
bution volume in the highest particle concentration range (Hounsfield unit > 2000) in
the heating group decreased by 22% compared to that of the control group [82]. On the
contrary, the distribution volumes in the groups with lower particle concentration ranges all
increased compared to the control, ranging from 16% to 91%. Overall, the total nanoparticle
distribution volume in the tumor group heated for 25 min was 42% larger than that in
the tumor group without heating, indicating possible particle migration induced by local
high-intensity heating [82].
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Nanoparticle migration to tumor center regions was also observed in pancreatic
tumors (ductal adenocarcinoma) after hyperthermia treatment [70]. In this study, iron-
based nanoparticles were injected intratumorally into a pancreatic ductal adenocarcinoma
implanted in a heterotopic xenograft mouse model, and the tumor was subjected to an
alternating magnetic field of 20 kA/m at 829 kHz. Through histological analyses of tumor
sections post resection, the authors reported a greater presence of magnetic nanoparticles
in the tumor central region than in the control without heating [70]. This suggested that
nanoparticle migration to the tumor center is triggered by the heating, although the exact
mechanisms behind the observation were unclear [70].

3.4. Theoretical Simulations to Understand Possible Mechanisms of Nanoparticle Migration
during Heating

Theoretical simulation is a useful tool to design heating protocols for cancer patients
before a heating treatment. In the past decades, the Pennes bioheat equation [62] has
been used as the governing equation to model the thermal effects of local blood perfusion,
metabolism, and external heat sources of hyperthermia approaches. Large disagreement
between experimental results of temperature measurements and theoretical predictions
was not uncommon [68,77] and this were attributed to inaccuracy of the nanoparticle
concentration C or the energy absorption rate SAR, as well as a failure to include the
dynamic responses of particle migration during heating.

Previous theoretical simulations of the tumor temperature field often assumed an
unchanged nanoparticle distribution during heating. This may be directly contradictory
to experimental observations. Previous experiments using transparent tissue equivalent
agarose gels have reported almost no noticeable change in nanoparticle distribution several
hours after the injection [80,83–85]. However, this equilibrium may be disrupted due to
changes in the transport properties in tumors. A more uniform nanoparticle distribution
after heating has been suggested by researchers due to more uniform temperature elevations
being observed in their studied tumors when heating was repeated [86].

It is possible that local heating resulting in local thermal damage (the Arrhenius
integral Ω) changed transport properties. Intensive local heating will elevate tissue temper-
atures to cause rupture of cell membranes and cell deaths. The originally bound intracellular
fluid, once released, may increase porosity [3,87,88], as follows:

ϕ(x,y,z,t) = ϕ0 + (80% − ϕ0)[1 - e(−Ω(x,y,z,t))] (2)

where ϕ0 is the original porosity of tumors before the heating, and Ω is the Arrhenius
integral indicating the extent of thermal damage. This equation suggests larger porosities
when the thermal damage is gets bigger. The 80% shown in Eq. 2 is the upper limit of
porosity due to 20% of tumor volume being occupied by the extracellular matrix, which is
assumed to not be affected by thermal damage [88].

Further, the diffusion coefficient Dn is a function of the interstitial space fraction
(porosity) ϕ:

Dn = Dn,f [2ϕ/(3 - ϕ)] (3)

where Dn,f is the nanoparticle diffusion coefficient in interstitial fluid with the porosity
equal to 1 [3,89–91]. This equation indicates how the diffusion coefficient could be enhanced
by a large porosity in the tumor during heating. This equation suggests that when the
interstitial space fraction increases from 20% in an unheated tumor to 80% after heating
to completely damage the tumor cells, the diffusion coefficient could increase more than
5-fold.

Nanoparticle migration is usually modeled by nanoparticle diffusion in a porous
medium [89,91]. The governing equation for the nanoparticle concentration (mol per unit
volume of tissue) C is written as follows:

∂C/∂t = ∇•[Dn ϕ ∇(C/ϕ)] (4)



Bioengineering 2024, 11, 900 9 of 20

Finally, the dynamic nanoparticle concentration C would affect the volumetric heat
generation rate in the SAR expression to influence the temperature elevations [88].

This approach has been tested in PC3 tumors in a magnetic nanoparticle hyperthermia
study with a coupled simulation system [88]. Figure 3 illustrates nanoparticle distribution
volumes in various concentration ranges. The bars on the left of individual sets are the
initial nanoparticle distribution volumes. The bars on the right of individual sets denote
the nanoparticle distribution volumes after heating for 25 min. The set on the right side
of the figure shows how the total nanoparticle distribution volume changes from the
initial 132 ± 35 mm3 to 160 ± 27 mm3 after 25 min of heating. In the highest particle
concentration range (45–100% of the maximal concentration), the nanoparticle distribution
volume decreases from the initial 44.2 ± 16.7 mm3 to 23.7 ± 17.6 mm3. On the contrary,
one observes significant volume increases in the lower particle concentration ranges. The
nanoparticle distribution volumes after heating increase by 28%, 78%, and 54% from their
initial values, shown on the three sets of bars from the left. The theoretical predictions of
the overall trend of nanoparticle migration in individual concentration ranges agrees very
well with experimental analyses of microCT images of PC3 tumors [82].
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Although the theoretical simulation results agree with the experimental data, enhance-
ment in nanoparticle diffusion due to thermal damage may be one of the mechanisms
behind nanoparticle migration. Several other factors including trans-tumoral fluid trans-
port and lymphatic flow are not included in the model [88]. However, results from these
studies may suggest the feasibility of manipulating nanoparticle dispersion to desirable
tissue regions using controlled local heating.

4. Nanoparticle Delivery in Tumors Enhanced by Mild Heating
4.1. Nanoparticles as Drug Carriers

The many nanostructures for drug delivery include liposomes, polymers, micelles,
dendrimers, nanocrystals, nanorods, and drug–polymer conjugates [92,93]. Placing drug
molecules inside nanostructures may minimize drug degradation and offer the possibilities
of targeting and controlled release [94]. Nanocarrier–drug conjugates are effective and
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selective in comparison with the traditional formula of drugs. Nanocarriers may also
reduce the toxicity level and other adverse effects in healthy tissues by depositing more
drugs in the targeted sites.

Most drugs are administered to the human body via intravenous injections [95]. After
a systemic injection of drug-loading nanofluid into the vein, drug concentration in the
bloodstream can be maintained at a high level depending on the drug’s circulating half-life.
One of the biggest challenges is drugs accumulating in the liver or spleen [96]. The liver
and spleen are part of the mononuclear phagocyte system. Their jobs are to filter toxins
from the bloodstream. Therefore, the liver and spleen may prevent drugs from reaching
their targeted tumor site [41].

Antibodies are often attached to drug-carrying nanoparticles to target specific tumors [97].
Active targeting antibodies and peptides can be anchored to the receptor structures often
overexpressed at the targeted locations [98]. The main targets are usually receptors on cell
membranes, antigens, or proteins on the shells of cells, and lipid components of the cell
membranes. Typically, the tumors have specific receptors overexpressed. For example, it
was reported that Ephrin type A receptor 2 is overexpressed at the surface of PC3 cells [99],
while the receptor is at a low level in normal tissues. Thus, recombinant monoclonal antibody
1C1 can be used to bind the Ephrin type A receptors 2 on PC3 tumor cells [100]. In some
studies, a strong magnetic field is used to guide magnetic nanoparticles to a desired tissue
location when magnetic nanoparticles are used as nanocarriers [96]. The unique advantages
of an external magnetic field are to remotely navigate nanoparticles to the targeted site. In
passive targeting, the prepared drug carrier complex circulates around the entire body and is
driven to the target site by attraction or binding influenced by properties such as temperature,
pH, molecular site, and its shape. Unlike normal tissues, tumor capillaries are often leaky.
Systemically administered nanoparticles have been shown to passively accumulate in tumors
because of the enhanced permeability and retention effects [101].

4.2. Challenges in Drug Delivery

It is well known that tumor blood vasculature forms rapidly to result in abnormal
branching patterns and lumen structures [102]. Blood perfusion supply to tumors can be
lower than that to the surrounding normal tissue, especially in the late growing stages [103].
Decreased blood perfusion rate reduces oxygen supply to tumors and causes a hypoxic
microenvironment. Hypoxia at the tumor central regions often boosts tumor metastases.
Low blood perfusion also reduces the total amount of the systemically administered drugs
to targeted tumors.

Solid tumors show a higher-than-normal interstitial fluid pressure, which is another
obstacle to transcapillary fluid flow. This barricade results in the ineffective uptake of
therapeutic agents. Several factors may cause an increase in interstitial fluid pressure
within the tumor site, such as vessel abnormalities, fibrosis, and shrinkage of the interstitial
matrix [36]. Vascular abnormality may be due to the fast growth of tumors within a limited
space in tissue [104]. The interstitial fluid space often occupies less than 15% of the body
volume. Exchange of oxygen, nutrients, and waste occurs in the interstitial fluid space.
Fluid exchange among capillaries, interstitial space, and lymphatic vessels is critical to the
homeostasis of tissue [105,106]. A compromised lymphatic system in tumors cannot drain
fluid out of tumors, and therefore results in IFP elevations within the tumor [107].

After extravasation, penetration of nanocarriers into the interstitial space is dominated
by diffusion and advection of the carrier solution in the porous tissues. Nanoparticle param-
eters, such as size, shape, surface properties, and concentration within the bloodstream, are
important factors that influence particle transport. The diffusion coefficient of nanoparticles
can be as small as 9 × 10−12 m2/s within the extracellular space [3,108]. Based on this
value, the drug/nanoparticles could only travel for less than 0.2 mm from the capillary
surface after one hour. The diffusion and advection can be further compromised for the
nanoparticles, since nanoparticles may stick on cell surfaces. Drug-carrying nanoparticles
may not be able to continue to move with the fluid [109].
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The mechanical properties of a tumor and its surrounding healthy tissue regulate how
a growing tumor pushes the host tissue and, conversely, how the host tissue limits tumor
growth [110]. Tissue-level stresses usually depend on the elastic modulus or stiffness of
both the tumor and its hosting tissue [110]. They also may depend on myofibroblast-like
fibroblasts compressing matrix components [111]. Collagen fibers actively resist tensile
loads, which tend to restrict the expansion of nodular tumors. In general, the solid stress in a
tumor is compressive in all directions [111]. Elevated solid stress in tumors also contributes
to difficulty in nanoparticle diffusion and advection in the interstitial fluid space.

4.3. Mild Heating in Enhancing Systemic Drug Delivery in Tumors

As stated in Starling’s law, the major driving forces for transcapillary flow include the
hydrostatic pressure difference and colloid osmotic pressure difference between the tumoral
capillaries and the tumor interstitial space [89,112]. Previous experiments have reported
low blood perfusion rates in tumors [113]. Unfortunately, the poor blood perfusion rates in
tumors also lead to low hydrostatic pressure in tumoral capillaries. With the increased IFP
in tumors, the driving force of transcapillary fluid transport is attenuated. Advection of
nanofluid and particle diffusion in the interstitial fluid space are limited by the elevated
internal pressure and poor blood perfusion in tumors. Any approaches to address these
individual factors within the tumor’s microenvironment would reduce the barriers to
promote drug-carrying nanofluid flow in tumors, to promote drug delivery. In systemic
drug delivery, unfortunately, less than 4% of the therapeutic agents injected eventually reach
targeted solid tumors [114]. To address this low payload, investigators have developed
methods to prolong the circulation time of therapeutic agents in the bloodstream, and/or
to attach a targeting moiety on nanocarrier surfaces for improved uptakes in tumor cells.
Another method that was investigated in the past is to implement mild local or whole-
body heating to increase drug delivery to tumors. Mild heating in cancer therapy is
usually referred to non-lethal heating that would not cause irreversible thermal damage to
tumor cells.

4.3.1. Local or Whole-Body Heating on Blood Perfusion and IFPs in Tumors

Blood circulation plays an important role in dissipating heat during hyperthermia.
Experimental studies by Song [115] showed a four-fold increase in the blood flow in the skin
when subjected to heating at 43 ◦C for 60 min. On the contrary, their experiments reported
a very limited initial blood perfusion increase and later decrease when the heating lasted
for a long time [115]. Local heating may cause reversible thermal damage to blood vessels,
therefore altering the local tumor microenvironment. Hauck et al. reported enhanced
delivery of chimeric 125I-labeled 81C6 to gliomas implanted in mice with local heating for
several hours [116]. In a study by Lammers et al. [117], local heating was introduced by
a warm-water bath to tumor-bearing limbs, and a larger increase in copolymer delivery
to one of the three tumor groups was reported [117]. A recent experimental study [118]
demonstrated significant blood perfusion increases in PC3 tumors measured by a laser
Doppler flowmeter. In this experiment, the implanted PC3 tumor was heated using an
illuminator to elevate its temperature above 39 ◦C. The 1 h local heating to the PC3 tumors
showed a modest increase of 20% in local blood perfusion rate from the baseline [118]. Using
local mild hyperthermia, Fan et al. [119] reported tumor blood flow increases by local mild
hyperthermia, and they also observed a 3-fold increase in nanoparticle delivery efficiency
in tumors. In another study, strong local heating to 43.8 ◦C for a short duration of 4 min
was given to 4T1 tumors, a murine mammary carcinoma, implanted on mice, immediately
followed by a tail vein injection of nanofluid [120]. Retention of the nanoparticles (red
fluorescence) in tumor tissues resected 24 h later increased by seven times compared
with the tumors without heating. They attributed this retention to increases in the blood
perfusion rate in the tumors, since they observed that more blood vessels in the tumors
opened after the heating [120].
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Previous experimental results on how local heating affected tumor IFP were not
consistent. One study showed significant decreases in IFP after immersing the melanoma
tumors in a water bath of 43 ◦C for 30–60 min [121]. Reduced IFPs in human breast
tumors after the tumor temperature was elevated to 42 ◦C by laser heating were reported
with enhanced deposition of liposomes in the tumors [122]. Another experiment by Gu
et al. [118] focusing on local heating of PC3 tumors for one hour showed very limited
IFP reductions from its pre-heating baseline values, approximately less than 2 mmHg
immediately or two hours post heating. However, local heating of implanted gliomas at
42 ◦C for several hours showed no significant differences at any time point in the measured
IFPs [123].

Mild whole-body hyperthermia has also been implemented to increase nanoparticle
delivery to tumors. The first investigation was performed by Sen et al. [124]. In this
study, the tumors used were murine colon tumors and murine melanomas implanted in
mice. After the mice were subject to 2 h, 4 h, or 6 h of mild whole-body hyperthermia,
they measured smaller IFPs in the tumors, when compared to the control group without
heating. They also found that IFP reductions, increases in local tumoral blood perfusion,
and reductions in tumor hypoxia were correlated. Winslow et al. [125] implemented a 4 h
whole-body hyperthermia on human head and neck tumors implanted in mice. The IFPs
in the tumors after 4 h of whole-body hyperthermia were 23% smaller than those in the
tumors without heating, and the reductions lasted for more than 24 h. Fluorescent imaging
of liposomes circulating in the bloodstream demonstrated more opened blood vessels and
more intensive liposome extravasation in the frozen tumor sections.

Gu et al. tested this approach to evaluate whether the results were the same on PC3
human prostate tumors implanted in mice [82,118]. They injected 0.2 mL of nanofluid
containing gold nanoparticles via the tail vein of mice after 1 h or 4 h of whole-body
hyperthermia. A micro-pressure transducer was inserted into the tumor tissue to measure
IFPs repeatedly at the same tumor location. They reported significant decreases in IFPs
in tumors in the heating groups from the values before the heating. On average, IFP
reductions of 9.0 ± 6.3 mmHg and 4 ± 4.6 mmHg were measured in the tumor groups with
whole-body hyperthermia for 1 h and 4 h, respectively [118]. The reductions in the IFPs
were also sustained for 24 h in both groups. After the heating experiment, ICP-MS was
used to assess the total amount of gold in the resected tumor, showing an increase in gold
mass of 51–67% in the heating groups compared to that in the non-heating group. Since the
IFP reduction in the 1 h heating was actually larger than that in the 4 h heating group and
the enhancement in nanoparticle deliveries were similar, 1 h mild whole-body heating may
be a readily implementable strategy in future clinical studies [118].

4.3.2. Possible Mechanisms of Heating on Tumor Microenvironment

The specific mechanisms of mild whole-body heating with only several degrees Celsius
of temperature elevations to facilitate drug/nanoparticle delivery to targeted tumors are
still unclear. Previous studies have demonstrated that heat-induced permeability increases
to boost the drug/nanostructure entering the interstitial space in tumors in systemic drug
delivery [35,126–129]. One paper reviewed the effectiveness of combined radiofrequency
thermal ablation and adjuvant IV liposomal doxorubicin to increase tumor destruction
by 25–30% [130]. One possible mechanism for the improved treatment efficacy is due
to increased vascular permeability as a result of endothelial thermal stress/injury. Kong
et al. [126] demonstrated enlarged pores on vascular endothelial in tumors after mild hyper-
thermia. Other studies have also confirmed a correlation between large drug accumulations
in tumor regions and high temperature rises in tumor models [131,132]. Li et al. [127] found
large endothelial lining gaps (87 nm) after a whole-body heating at 41 ◦C for 30 min and
deep penetration depths of large-sized liposomes from the vessel wall in the interstitial
fluid space (up to 27.5 µm) [127]. Most importantly, this study did not demonstrate extrava-
sation in normal tissues, so liposome delivery can specifically target tumors [127]. Another
suggested mechanism is derived from a multi-drug resistance membrane protein that can
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be damaged by heat. Previous studies have demonstrated that reversible thermal damage
to tumor vessels and cells would increase cellular or nuclear membrane permeability of
large-molecule drugs, leading to more drug deposition [133–138].

Limited IFP reductions were reported in the tumors subject to local heating in previous
experiments. On the contrary, large IFP decreases were shown in tumors after whole-body
hyperthermia. Since the animals in these experiments were conscious during whole-body
hyperthermia, these investigators suggested that thermoregulation may play an important
role. It is well known that elevating body temperature would trigger thermoregulation. It
was suggested that neurovascular agents may be released through central control and they
travel through the bloodstream to reach the tumor site. These neurovascular agents may
be a major reason influencing the IFP reductions [124,125]. Whole-body heating may also
improve lymphatic drainage, thus increasing overall blood circulation [139,140]. Another
possible effect of mild heating may be related to solid stress modification in tumors. Tumors
typically exhibit high solid stress [103,141], leading to the compression of blood vessels
and lymphatic vessels in tumors. If the solid stress could be decreased by mild heating, it
would result in the opening of these vessels to improve fluid drainage and blood flow in
tumors [142,143].

Theoretical simulations are useful tools to evaluate proposed transport mechanisms to
explain experimental observations. Theoretical simulations of fluid transport and nanopar-
ticle diffusion in tumors have been conducted since the 1980s. In these studies, fluid
transport and diffusion in tumors were modeled as flow in a porous medium, while the
transvascular flow was modeled as volumetric fluid sources and sinks. Nanoparticle
diffusion and advection in the interstitial fluid space is modeled as a continuum convec-
tion and particle diffusion. An early study by Baxter and Jain investigated the effect of
hydraulic conductivity on drug concentration in a 1D model in a spherical tumor [144].
Later theoretical simulations were expanded to be 2D or 3D with various tumor sizes and
shapes [89]. These models were significantly improved recently by including cell uptakes
of drugs or nanoparticles, and these approaches often required multiscale modeling simu-
lation [145]. The accuracy of theoretical modeling was greatly improved as shown in the
agreement between theoretical predictions and experimental measurements. In the study
by Stepleton et al. [146], they reported predictions of liposome transport in tumors similar
to that in computed tomography (CT) results. Some simulation predictions suggested
that a small percentage decrease in IFP would significantly enhance nanoparticle delivery
to tumors [122]. Another recent theoretical simulation investigated the extent to which
increasing the lymphatic drainage or the permeability of a porous tumor would reduce
the IFPs at the tumor central regions [139]. The authors reported a very good agreement
between theoretical predictions and experimental measurements on the enhanced nanopar-
ticle accumulation 24 h after injection. Although their results suggest the possible roles
played by an increases in the hydraulic conductivity and/or recovery of lymphatic func-
tions, experimental evidence is still needed with advanced engineering tools to measure
these parameters [139].

5. Conclusions Remarks

Within the past decades, one has seen important advancements in the use of heating in
many therapeutic procedures, especially for cancer treatment. Hyperthermia is often used
either as a singular therapy leading to direct heat-induced cytotoxic response, and/or as an
adjuvant therapy with radiation and drugs in cancer treatment. In recent years, due to ad-
vancement in nanotechnology in medicine, many experimental studies have demonstrated
an interaction between heating and nanoparticles in tumors. Major experimental obser-
vations illustrated how heating changed the microenvironments in tumors via affecting
transport properties related to nanoparticle depositions and distribution in tumors. High-
intensity heating causes irreversible thermal damage to cancer tissue, and local damage
may alter tumor porosity, thus leading to strong particle diffusion. Nanoparticle migra-
tion observed in experiments, on the other hand, requires including dynamic responses
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in theoretical modeling to design a treatment protocol with reliable predictive capability.
In mild local or whole-body hyperthermia, heating may trigger thermoregulation in the
entire body, increase blood perfusion in the tumor, alter transport properties, and possibly
improve lymphatic drainage. The consequence is observed IFP reductions and enhanced
nanoparticles delivered to tumors. The challenge facing engineers and clinicians in the
field is that the observed effects of heating are limited to parameters at macro-scale levels
including pressure, temperature, blood perfusion, etc. There is a lack of direct experimental
evidence at the cellular or molecular levels. For example, nanoparticle migration is not
directly measured during a heating session. Changes in tumor porosity, permeability, and
lymphatic function have not been demonstrated in these experiments. Therefore, although
some theoretical simulations showed good agreements with experimental measurements,
these simulations were based on assumed transport mechanisms affected by local or whole-
body hyperthermia. Future experimental studies are warranted to evaluate the underlying
thermal and fluid dynamic mechanisms to provide direct experimental evidence of the
influences. The current experiments on animal models may be adopted in future clinical
studies. Mild whole-body heating within a short 1 h duration at 40 ◦C might be tolerated
by patients and easily implemented and controlled [147–149]. High-intensity local heating
in tumors could be used first to generate an easy passage for later systemic drug delivery.
Multifunctional nanoparticles could be developed to serve both heating and drug carrying.
Thermal damage to certain tumor regions would facilitate drugs to be delivered to cover
the entire tumor. Manipulating the tumor microenvironment via local or whole-body
hyperthermia has great potential in cancer treatment to enhance delivery of drug-carrying
nanoparticles tumors or to achieve desirable nanoparticle distribution in tumor ablation.
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