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Abstract: A theoretical simulation is performed to evaluate how microcracks affect the flow resistance
in tumors during the convection-enhanced delivery (CED) of nanofluids. Both Darcy’s law and
the theory of poroelasticity are used to understand fluid transport with or without microcrack
introduction and/or enlargement. The results demonstrate significantly altered pressure and velocity
fields in a spherical tumor with a radius of 10 mm due to the presence of a microcrack with a radius
of 0.05 mm and length of 3 mm. The non-uniform fluid pressure field enlarges the original cylindrical
microcrack to a frustum, with the crack volume more than doubled. Due to the larger permeability
and porosity in the microcrack, flow in the tumor is much easier. One finds that the flow resistance
with the enlarged microcrack is reduced by 14% from the control without a microcrack. Parametric
studies are conducted to show that larger crack radii, longer crack lengths and higher infusing
pressures result in further resistance reductions. The largest resistance reduction occurs when the
infusing pressure is 4 × 105 Pa and the microcrack is 9 mm long, up to 18% from the control. We
conclude that introducing a microcrack is an effective way to facilitate nanofluid delivery in porous
tumors using CED.

Keywords: drug delivery; porous tumors; convection-enhanced delivery (CED); microcrack; tumor
tissue deformation; flow resistance; nanofluid

1. Introduction

Medical advancements have enhanced the 5-year survival rates among cancer patients
recently; however, clinicians still encounter considerable obstacles in planning effective
treatment approaches to transport anti-cancer medications to tumors while alleviating the
toxicity associated with drug accumulation in healthy organs and tissue. Drug delivery to
solid tumors usually involves intravenous injection. The drug payload is often low using
this approach, with less than 5% of the systemically injected drug eventually reaching
the targeted tumor, while the majority of the drug is either cleared by the liver, spleen,
or kidneys or deposited in other healthy tissue regions [1]. In addition, this approach is
not suitable for poorly perfused and large-sized tumors. Some tumors at the late growth
stages often form a necrotic/hypoxic core at the center, relying on the minimal supply of
oxygen to survive [2]. Further, the systemic delivery of drugs may not be effective in brain
tumor treatment because of the blood–brain barrier (BBB) [3]. To overcome the challenges
faced by systemic delivery due to the presence of the BBB or limited blood perfusion,
intratumoral infusion via convection-enhanced delivery (CED) has been proposed by
means of single-port or multiple-port needles. This method has been widely used to
deliver a variety of large therapeutic agents in tumors by the continuous injection of a
drug-carrying nanofluid under a pressure difference [4–7]. With CED, therapeutic agents
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may achieve tissue penetration of a few centimeters, unlike systemic delivery, which can
only achieve a depth of micrometers from the capillary pores [8–10].

Several limitations have been noted in the past few decades when using CED. Among
these are backflow along the needle, air bubbles, edema, and drug concentration hetero-
geneity. Backflow, also known as reflux, occurs when a catheter disrupts tissue sufficiently
to create a void along its insertion tract, leading to a fluid-filled gap between the needle and
tissue. This allows infusates to flow back along the catheter, rather than into the targeted
tumor tissue [10]. Clinical studies have reported severe reflex pain experienced by patients
with liver tumors when ethanol was injected directly into the tumor and leaked to the
healthy tissue [11].

Previous studies have shed light on various factors that influence backflow to improve
the drug delivery efficacy. Orozco et al. [12,13] used a three-dimensional finite element
model to evaluate the infusion parameters of backflow during CED in the brain. Their
findings underscore the relevance of the distance between the infusion cannula and the
ventricles in limiting backflow, with long distances resulting in comparable backflow
lengths independently of the ventricular pressure [12]. They also found that greater
insertion speeds provided a larger pre-stress field, reducing the backflow duration over a
range of flow rates. The study’s experimental validation in agarose gel phantoms confirmed
the predictions, with a significant decrease in the backflow length as the insertion speeds
were increased [13]. Ayers and Smith [14] used a unique biphasic fluid–structure interaction
(FSI) model to mimic infusion processes in agarose gel. Their model correctly recreated
the experimental backflow lengths and maximum fluid pressures [14]. A major discovery
indicates that small catheters, which require greater infusion pressures to achieve the
appropriate medication distribution, often lead to intensive backflow. Theoretical studies
by our group [15] showed that higher infusion rates, larger needle diameters, and lower
elastic moduli yield longer backflow lengths and cause more irregular spreading shapes
in the nanofluid. Together, these investigations have added greatly to the understanding
of backflow in CED and provided vital insights into techniques for the optimization of
medication delivery to tumors, thus leading to enhanced treatment outcomes [12–15].

Soft and thin catheters, as well as new “step-design” catheters, have been shown to
reduce backflow [16–18]. Several improvements in cannula design have implemented flexi-
ble cannulas, resulting in increased infusion rates, reduced backflow, and increased fluid
volumes through the cannula-induced track. Some experimental results have demonstrated
that CED using catheters with larger diameters is more likely to lead to reflux [19–21]. This
observation resulted in a step-down catheter design called a reflex-preventing catheter [22].
Multiport catheters were originally designed for hydrocephalus. Later, they were adapted
for CED due to their potential for better volume distribution [6]. However, achieving pre-
dictable flows from all ports proved challenging, often resulting in infusates flowing only
through the most proximal port. The proposed solutions included using porous materials
to spread the infusion area, developing catheters with separate lumens, or using catheters
with controllable portholes. A breakthrough came with Twin Star Medical’s development
of a hollow-fiber catheter [23], which contains millions of tiny openings (0.45 µm) along its
wall surface [23]. This design has successfully increased infusate transfer up to three-fold,
improved the uniformity of distribution, and reduced backflow, therefore making it a
promising advancement in CED technology [23]. The balloon-tipped catheter approach
uses a balloon near the catheter tip to fill the resection cavity, pushing the infusate into the
cavity and limiting reflux [22]. Studies in canine models have shown the extensive delivery
of infusates [22].

The company Rex Medical (Conshohocken, PA) recently developed an infusion
catheter (Quadra Fuse ST) consisting of three retractable injection tines. The tines are
hidden inside a hosting catheter initially. At the end of the hollow catheter, 10 mm hollow
tines with sharp tips are attached for the piercing of tissue. After the catheter is inserted
into the targeted tissue, the three tines can be ejected in three directions and therapeutic
fluid then flows from their tips. This device also allows repeated infusion. After the first
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round of infusion, the tines are retracted back to the hosting catheter; one then rotates the
hosting catheter by 60◦, resulting in three new ejection directions of the tines. The original
design of this device aims at using the tines for infusion improvement, and the retracting
ability of the tines allows more infusing sites to enlarge the infused tissue volume. Clinical
studies have demonstrated the efficiency of this device in delivering ethanol to liver tu-
mors [11,24]. They found that, with the traditional single-needle infusion of ethanol to liver
tumors, patients often expressed severe pain, possibly due to the leakage of the ethanol
through the backflow channel to the surrounding healthy tissue. After they employed the
retractable-tine catheter, less pain was experienced by the patients, implying less leakage of
ethanol to healthy tissue with sensory nerves [11,24].

Backflow, in principle, is largely due to tissue deformation. There have been several
studies that have evaluated the enlargement of the generated gap between the infusion
catheter and the tissue [14,15]. In principle, any methods to make the flow easier in the
tumor would minimize backflow. None of the previous studies have evaluated a CED
system with a retractable tine, especially the effects of the retractable tines on the generation
of microcracks in tumors and the resulting change in flow resistance in tumors during
direct fluid infusion. In this study, we aim to develop theoretical models to evaluate how
the introduction of a microcrack in the tissue reduces the overall flow resistance in a porous
tumor, as well as further decreasing the flow resistance as this microcrack enlarges in a
direct infusion process using CED. Both Darcy’s law and the theory of poroelasticity are
used in the simulation to understand the fluid transport in porous tumors with or without
microcrack introduction and/or enlargement. We expect that the study will provide
quantitative measures to evaluate whether this approach is effective to enhance nanofluid
transport in dense porous tumors.

2. Materials and Methods
2.1. Model Setup

In this study, a tumor is modeled as a fully saturated, spherical, porous medium
with a radius of 10 mm (ro = 10 mm). The interstitial fluid inside the tumor is assumed
as a Newtonian fluid and intrinsically incompressible. The tumor is considered spatially
homogeneous with uniform biological and physical properties. The infusion needle track
is omitted in this study because our aim is to evaluate the role played by microcrack
induction and enlargement. As shown in Figure 1, the convection-enhanced fluid infusion
at the needle tip is simplified as a fluid flow passing a spherical surface with a radius
of ri = 0.64 mm, which is equivalent to the opening of a 18 G Hamilton needle in direct
infusion. The fluid infusion site is modeled as a surface with a prescribed pressure (P0) as a
driving force for the fluid flow.
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Figure 1. Three models generated in this study for simulation. (Left): the first model without a
crack; (middle): the second model with a cylindrical microcrack; and (right): the third model with an
enlarged microcrack.
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We construct three tumor models for the comparison of the flow resistance with or
without a microcrack, as well as with or without microcrack enlargement. The first model,
or the control, represents a porous tumor without a microcrack. A cylindrical microcrack is
included in the second model, shown in the middle panel of Figure 1. The microcrack is
modeled as a cylindrical column that is initiated in the infusion surface and extended to
the tumor periphery. Both the microcrack and the remaining tumor region are modeled as
porous media with individual porosities and permeabilities. The interstitial fluid pressure
field using Darcy’s law is the input needed for the poroelastic simulation to predict the
tissue deformation and microcrack enlargement during the infusion process. It would
be ideal to have the Darcy’s pressure field coupled with the tissue deformation in the
second model. Unfortunately, the computational software that we use only allows one-way
coupling, i.e., it does not allow the update of the pressure field after tissue deformation.
Thus, we construct the third model, in which an enlarged microcrack is included, as shown
in the right panel of Figure 1. The geometry of the enlargement of the microcrack is exported
from the poroelastic simulation of tissue deformation from the second model. The shape
and the geometry of the microcrack after enlargement are then regenerated in the software
and introduced to the porous tumor. Both the microcrack and the remaining tumor region
are again modeled as uniform porous media with respective porosities and permeabilities.
In the third model, only Darcy’s law is needed to update the pressure and velocity fields.
Although, in theory, the updated pressure field would further affect the tissue deformation,
due to the limitations of our software, we are not able to truly couple the fluid pressure and
tissue deformation in the poroelastic simulation. Therefore, the current study is viewed as
reflecting the lower limit of tissue deformation and microcrack enlargement.

2.2. Governing Equations

Directly after the initiation of fluid infusion, both the fluid field and tissue deformation
are assumed to occur instantaneously, and the focus of this research is on the resultant
deformation rather than the deforming process. Thus, the system including fluid flow and
tissue deformation is considered to be in a steady state.

In this study, the tumor tissue is treated as porous media, reflecting a structure com-
prising a solid matrix interspersed with interconnected pores or void spaces. The pores
inside the tumor are saturated before the infusion. The theory of Darcy’s law [25] is used to
describe how fluid flows in tissue, which is given by

∇·
(

ϕ
→
V f

)
= 0 (1)

∇Pf = −µϕ

K

→
Vf (2)

where
→
Vf is the interstitial fluid velocity vector, Pf is the interstitial fluid pressure, µ is

the fluid dynamic viscosity, ϕ is the tumor porosity, and K is the permeability of the
porous tumor.

As shown in Figure 1, with the microcrack, there are two porous medium regions.
The first region is the porous tumor tissue with a radius of 10 mm, having permeability
K1 = 5 × 10−16 m2 and porosity ϕ1 = 0.2 [15]. The microcrack is modeled as the second
porous medium region with much greater permeability K2 and porosity ϕ2. It is well known
that tissue consists of three major regions: the interstitial fluid space, the extracellular
matrix, and the cells. Porosity is defined as the ratio of the volume of the interstitial fluid
space to the total tissue volume. When a tine pierces the tissue, one could assume that all
cells on the piercing pathway would be damaged to release all fluid inside. This would
enlarge the interstitial fluid space tremendously. Previous research [26] has stated that the
extracellular fluid space occupies approximately 20% of the region of a tumor. After being
pierced by the tine, the microcrack only has the extracellular matrix and the interstitial
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fluid space remaining. The porosity of the microcrack region can then be calculated as
100% − 20% = 80%, or ϕ2 = 0.8.

It is well known that a tumor’s permeability is closely related to its porosity. We
use the relationship between the porosity of deformed tissue and tissue dilatation e from
previous studies [27,28]:

ϕ2 =
ϕ1 + e
1 + e

(3)

Substituting the values of the two porosities into the above equation yields a dilation
value e equal to 3. To quantify the permeability K as a function of dilatation e, we use the
relationship given by Lai and Mow [29] as

K2 = K1exp(M ∗ e) (4)

where K1 is the permeability in the absence of deformation, and M is a material constant
that governs the variation in the permeability with deformation. For simplicity [15,28–30],
we use the value M = 2. Substituting the value of e = 3 into the above equation leads to the
following calculation:

K2 = 403.26 K1 (5)

Equations (1) and (2) can be combined into a governing equation for the pressure field
in the interstitial fluid space, Pf, as

∇2P f = 0 (6)

The interstitial fluid pressure can be solved first with appropriate boundary conditions.
The boundary conditions, required to solve the pressure field, consist of a prescribed
pressure P0 at the inner spherical surface representing the infusion surface. At the tumor’s
outer surface (r = ro), its pressure is zero. This is an assumption, since tumors may be
surrounded by tissue at different pressure levels, and liquid transport is dominated by the
pressure gradient rather than the absolute pressure values. The boundary conditions of the
pressure field are written as

r = ro, Pf = 0 (7)

r = ri, Pf = P0

The deformation of a purely elastic material is proportional to the imposed stress
developed either externally due to the behavior of the surrounding normal tissue or
internally by its own growth [15,31,32]. In a porous tumor, the fluid pressure in the
interstitial fluid space is not uniform during direct fluid infusion. The non-uniformity
of the fluid pressure would place extra displacements and strains on the tissue. In the
theory of poroelasticity, the fluid pressure is included in the governing equation for tissue
deformation as

G∇2→u + (λ + G)∇
(
∇·→u

)
= ∇

(
ϕPf

)
(8)

where
→
u is the tissue displacement vector; G and λ are Lame constants that can be deter-

mined by Young’s modulus E and Poisson’s ratio ν using the following expressions:

λ =
Eυ

(1 + υ)(1 − 2υ)
; G =

E
2(1 + υ)

(9)

Boundary conditions are needed to solve the tissue displacement field. The outer
boundary of the tumor is fixed in space, indicating zero displacement. Although the
infusion cavity may also be pushed in the radial direction, in this study, we assume that
the inside spherical surface is subjected to a roller constraint, i.e., the displacement is zero
in the direction perpendicular to the boundary but the boundary is free to move in the
tangential direction. The boundary conditions are written as

r = ro
→
u = 0 (10)
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r = ri
→
u ·→n = 0

2.3. Solving Procedures

In this study, the first model in Figure 1 utilizes Darcy’s law to simulate the pressure
and velocity fields during a direct fluid infusion process, and it is used to estimate the flow
resistance of the control without any microcracks. The second model aims to demonstrate
the influence of the non-uniform interstitial fluid pressure field due to the introduction of a
microcrack on tissue deformation, especially in the microcrack region. The displacement
vector along the microcrack is then exported from the second model and analyzed in Excel
(Microsoft EXCEL 2016) to acquire the shape change of the microcrack from the original
cylinder to an approximate wedge shape. Excel also allows the approximation of the
enlarged microcrack by a simplified frustum shape to be imported to the third model. The
third model with the enlarged microcrack is used to assess how the fluid field is affected by
the enlargement in the microcrack during the fluid infusion.

In each model, the volumetric flow rate is calculated by integrating the normal fluid
velocity over the outer surface of the tumor. The flow resistance is defined as the pressure
difference between the infusion needle and the tumor’s outer surface divided by the
calculated volumetric flow rate (Qouter) and is given by

R f low =
Po − 0
Qouter

(11)

2.4. Numerical Simulation Methods

The governing equations are solved using the multi-physics platform of the COMSOL
software package (version 6.1, COMSOL Inc., Stockholm, Sweden) under the Sub-surface
module, which can handle poroelastic modeling to determine the deformation of tissue
when subjected to a fluid field in a porous medium. The simulation domain is two-dimen-
sional axis-symmetric. The meshes of the geometry are generated by the software. A direct
linear solver, the Multifrontal Massively Parallel Sparse Direct Solver (MUMPS), with a
default pre-ordering algorithm is used to solve the poroelastic model, while the Parallel
Sparse Direct Solver (PARDISO) is used to solve the pressure and velocity fields.

The sensitivity to the mesh size is evaluated to ensure the accuracy of the numerical
simulation. Table 1 shows how varying mesh sizes affect the results of the volumetric
flow rate on the tumor surface during infusion in the tumor with the introduction of a
microcrack. It illustrates that a 100% increase in the number of mesh elements, from a
finer mesh setting (1764 elements) to an extra fine mesh setting (3845 elements), results in
a negligible alteration of less than 0.14% in the volumetric flow rate. A further increase
in the total number of the elements to 12,879 using the setting of an extremely fine mesh
only changes the result by less than 0.04%. Further, the numerical simulation results of the
pressure field in the first model were compared to an analytic solution in a one-dimensional
porous medium pressure field. It was found that the numerical simulation results of the
pressure fields agreed very well with the prediction using the analytical solution, with
deviations of less than 0.01%.

Table 1. Sensitivity of simulated results to mesh size.

Mesh Type # of Triangular Elements Qouter m3/s

Extremely fine 12,879 9.451 × 10−10

Extra fine 3845 9.4475 × 10−10

Finer 1764 9.4348 × 10−10

Fine 1160 9.413 × 10−10



Fluids 2024, 9, 215 7 of 20

3. Results
3.1. Parameters

The geometric parameters of the tumor, the infusion site, and the microcrack are listed
in Table 2. The infusion needle is an 18 G needle with a radius of 0.64 mm, representing
the radius of the infusion’s spherical surface. The microcrack is formed due to a tine
injection and retraction. The tine has a size of 25 G, being approximately 0.207 mm in
radius. Considering that, after the tine’s retraction, the tissue would bounce back, resulting
in a much smaller radius than that of the tine, in this study, we select the radius of the
microcrack as 0.025 mm or 0.05 mm. Several possible lengths of the tine/microcrack are
selected, varying from 3 mm to 9 mm.

Table 2. Geometrical parameters used in the simulation.

Geometrical Parameter Value

Infusion surface radius ri 0.64 mm

Tumor outer radius ro 10 mm

Microcrack radius without enlargement 0.025 or 0.05 mm

Microcrack length 3 mm, 4.5 mm, 6 mm, 7.5 mm, or 9 mm

The fluid transport properties in the porous tumor and the solid mechanical proper-
ties of the tissue are summarized in Table 3. All fluid transport properties are obtained
from the literature or derived as described in the previous section. The properties of the
solid tumor, including the density, Young’s modulus, and Poisson’s ratio, are found from
previous research [4,15,28,33–35]. The solid mechanical properties of the microcrack are
unknown. In theory, this microcrack domain should be modeled as a fluid by the tradi-
tional Navier–Stokes equations. Unfortunately, our simulation module in COMSOL does
not allow the selection of this domain as a purely liquid domain. Considering that the
microcrack domain is very close to a liquid domain, we select a small Young’s modulus
for this domain without causing simulation singularities. With this approximation, the
simulation result from the current study can be considered as the lower limit of microcrack
enlargement, as the enlargement of the microcrack would have been larger if the domain
was treated as a purely liquid domain.

Table 3. Fluid and mechanical properties used in the simulation [4,15,28,33–35].

Fluid Property Mechanical Property

Density of tumor ρ 1000 kg/m3 Tumor Young’s module E1 0.3 MPa [28,33]

Tumor porosity ϕ1 0.2 [34,35] Crack Young’s module E2 0.003 MPa

Crack porosity ϕ2 0.78, 0.8, 0.81 Tissue Poisson’s ratio ν1 0.4 [4,28]

Tumor permeability K1 5 × 10−16 m2 [28,34] Crack Poisson’s ratio ν2 0.4 [4,28]

Crack permeability K2 1 × 10−13, 2.0173 × 10−13, 3 × 10−13 m2

Infusion pressure P0 105, 2 × 105, 4 × 105 Pa [15]

Dynamic viscosity µ 10−3 Pa s [15]

3.2. Baseline Case Simulation Results
3.2.1. Pressure and Velocity Fields without Introduction of Microcrack [36]

In both Tables 2 and 3, the bold properties or parameters represent those used in the
baseline case before the parametric study. The control used in our simulation considers a
tumor with a radius of 10 mm, with a fluid infused from a spherical surface having a radius
of 0.64 mm. The outside boundary condition for the fluid is maintained at zero pressure,
while the pressure at the infusion surface is selected as 2 × 105 Pa, as shown in Table 3.
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Without the introduction of a microcrack, the pressure field is one-dimensional, depending
only on the radial direction in the spherical coordinate system. Figure 2 gives the contours
of the interstitial fluid pressure in the porous tumor, illustrating the satisfaction of the
boundary conditions of the pressure field. A rapid decrease in pressure to 50% of its
initial value can be seen when the distance from the infusion surface r = 1.286 mm, while
it decreases to 10% of its initial value at r = 4.875 mm, less than halfway towards the
tumor outer surface. This indicates that major fluid resistance occurs in the tumor’s central
region, rather than the tumor’s periphery. Therefore, most of the tumor region towards
the periphery appears blue. Figure 2 shows the velocity vector distribution in the tumor
with an enlarged velocity field near the infusion surface. It is a clear directional flow away
from the infusion surface, indicating the radial dispersion of the fluid through the tumor
tissue. Based on the simulation parameters, the maximal velocity magnitude occurring at
the infusion surface is 1.66 × 10−4 m/s. The magnitude of the velocity vector decreases
in the radial direction and its magnitude at the tumor outer surface is 6.84 × 10−7 m/s,
confirming the mass conservation in the simulation. As expected, both the pressure and
velocity fields in the first model show their dependence on the radial coordinate r.
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Figure 2. Simulated pressure field (left) and velocity field (right) in the tumor without a microcrack.
The inset images are the enlarged pressure and velocity fields near the infusion surface.

3.2.2. Microcrack Introduction and Tissue Deformation by the Poroelastic Model

The effect of an introduced microcrack in the tumor is examined in the second model,
in which the cylindrical microcrack has a radius of 0.05 mm and a length of 3 mm in the
baseline case. Figure 3 gives the pressure field with the cylindrical microcrack. The inset
image shows the enlarged pressure field near the infusion surface and along the microcrack.
One observes that the maximal pressure again occurs at the tumor’s central region, aligning
with the prescribed boundary condition at the infusion surface. Since the permeability of the
microcrack domain is much larger than that in the regular tumor region, the flow through
the microcrack is much easier than that through the tumor. Figure 3 shows small pressure
drops from the infusion surface to the tumor–microcrack interface, as if an extension of the
isobaric contour from the original infusion surface. Therefore, the microcrack facilitates
fluid transport to the tumor periphery surface by reduced resistance and a shortened
distance. Figure 3 also provides the velocity field, where the velocity magnitude exhibits
a peak of 0.0178 m/s along the microcrack near the infusion surface. It is also evident
that the maximal magnitude of the velocity vector is two orders of magnitude higher than
that in the first model without a microcrack. The minimal velocity at the tumor’s outer
surface increases by 3.9%, from 6.84 × 10−7 in the first model to 7.11 × 10−7 m/s. The
large contrast in the velocity variation from the maximal to the minimal value results in the
appearance of an almost bluish color in most of the tumor region, except near the infusion
surface and along the microcrack path.
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Figure 3. Simulated pressure field (left) and velocity field (right) in the tumor with a cylindrical
microcrack. The inset images are the enlarged pressure and velocity fields near the infusion surface
and along the microcrack.

The generated interstitial fluid pressure (Pf) from the Darcy model is given as an input
to determine the deformation of the surrounding tumor tissue. Based on the poroelastic
model described in the Section 2, the non-uniform interstitial fluid pressure is the major
reason for the non-uniform displacement of the tissue during fluid infusion using CED.
Two components of the displacement vector in the simulation domain are presented in
Figure 4. In the direction perpendicular to the axis of the microcrack shown in the left panel,
the displacement component perpendicular to the microcrack axis is positive everywhere,
indicating that the tissue moves in this direction (the black arrows in the figure). One notices
that the maximal displacement occurs near the central region, but not at the infusion
surface, due to the prescribed roller boundary condition there. The maximal displacement
in the lateral direction is less than 0.08 mm. On the other hand, in the direction along
the microcrack axis, shown in the right panel, the negative values in the region around
the vicinity of the microcrack indicate that the tissue moves downwards (blue color in
the figure), while the red-colored region represents a positive value in the displacement
component, suggesting that the tissue moves upward. One notes that the displacement
surrounding the microcrack (the bluish region in the right panel) is around 0.0982 mm,
which is larger than the region without a microcrack (the reddish region in the right panel).
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The displacement vector determined in the poroelastic model can be exported to
understand how the microcrack is enlarged due to the fluid infusion. In this study, we
select the displacement vectors along the interface between the microcrack and tumor
tissue for further analysis. As shown in Figure 5, the two components of the displacement
vector are exported and plotted in Excel. The green dots in Figure 5 represent the original
interface. After adding the two components of the displacement vector in the directions
perpendicular to and along the microcrack axis, respectively, one can generate the new
interface positions on the cross-sectional plane. The red dots in Figure 5 provide the
new interface between the microcrack and tumor region. Overall, the magnitude of the
displacement in the lateral direction of the interface varies from 0.025 mm near the infusion
surface to 0.0073 mm at the tip of the microcrack, leading to a frustum-shaped crack. The
deformation is significant since the original microcrack radius is 0.05 mm. The volume of
the frustum is 2.26 times the value of the original cylindrical microcrack, due to the fluid
infusion-induced tissue deformation. Using a curve fitting to the new interface, one can
generate an approximated frustum microcrack. This simplified recreation of the enlarged
microcrack serves as a basis for the third model to re-examine the pressure and velocity
fields with the enlarged microcrack.
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Figure 5. The original (green dots) interface and post-deformation (red dots) interface of the microc-
rack and tissue plotted in Excel. A frustum-shaped microcrack is generated using curve fitting.

3.2.3. The Enlarged Microcrack Constructed in the Third Model

The third model considers the fluid field in the tumor with a frustum-shaped microc-
rack, as reconstructed in the previous section. The rapid decrease in the interstitial fluid
pressure with the enlarged microcrack is shown in Figure 6, appearing highly localized
around the infusion surface and along the microcrack. Similar to Figure 3, there is a notable
push towards the tumor’s outer surface in the high-pressure region as compared to the
control in the first model. This is due to the reduced resistance and shortened distance for
the fluid to reach the tumor boundary with the formation of the frustum-shaped microcrack.
When one examines the velocity field shown in Figure 6, the maximal velocity is 0.0106 m/s,
which is of the same order of magnitude but smaller than that in the second model. This
result may be explained by the larger cross-sectional area due to the lateral enlargement of
the microcrack from the original radius of 0.05 mm to 0.085 mm. It is worth noting that the
minimal velocity in the tumor with the enlarged microcrack is 7.29 × 10−7 m/s, the largest
in the three models. Again, the large variation in the velocity field in the tumor causes the
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color to appear bluish in most of the tumor, except near the infusion surface and along the
microcrack path.
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Figure 6. Simulated pressure field (left) and velocity field (right) in the tumor with an enlarged
frustum microcrack. The inset images are the enlarged pressure and velocity fields near the infusion
surface and along the microcrack after deformation.

3.2.4. Flow Rate and Flow Resistance

The volumetric flow rate can be calculated by integrating the velocity component
normal to the outer surface of the tumor over the outer surface. Listed in Table 4 are the
volumetric flow rates and flow resistance defined in Equation (11). The volumetric flow
rate in the tumor without a microcrack is equal to 8.59 × 10−10 m3/s under the pressure
difference of 2 × 105 Pa. The introduction of a microcrack and the subsequent enlargement
of the microcrack increase the volumetric flow rate by 10% and 11.6%, respectively. As
seen in Table 4, a microcrack substantially decreases the flow resistance within the porous
tumor. The introduction of a cylindrical microcrack to the spherical tumor decreases the
flow resistance from 2.328 × 1014 Pa s/m3 in the first model to 2.116 × 1014 Pa s/m3 in the
second model, by 9%. With the enlarged microcrack utilized in the third model, the flow
resistance is further reduced from that in the second model. Overall, having an enlarged
microcrack results in a decrease of 14% from the control without a microcrack.

Table 4. Volumetric flow rate on the tumor’s outer surface and the flow resistance in the three models.

The 1st Model The 2nd Model The 3rd Model

Qouter, m3/s 8.592 × 10−10 9.451 × 10−10 1.000 × 10−9

Rflow, Pa s/m3 2.328 × 1014 2.116 × 1014 1.999 × 1014

3.3. Parametric Studies

This section quantifies how changes in one or more parameters or variables affect the
simulation outcomes. The analysis will elucidate the direct implications of a microcrack
for the fluid transport efficiency and flow resistance, while revealing pivotal insights to
enhance fluid delivery to tumors.

3.3.1. Changing the Axial Length of the Microcrack

The geometry of the original cylindrical microcrack is determined by the retractable
tine. In this study, we vary the length of the microcrack from 3 mm (the baseline case)
to 9 mm to examine how the length of the microcrack affects the pressure and velocity
fields, as well as the enlargement of the microcrack. The enlargement of the microcrack
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due to tissue deformation is illustrated in Figure 7. It is unsurprising that we see almost the
same lateral displacement near the infusion surface for different lengths of the microcrack,
due to the same local fluid pressure of 2 × 105 Pa. As the fluid pressure decreases along
the axial direction of the microcrack, the lateral displacement tapers. Note that the effect
of microcrack enlargement significantly declines between 4.5 mm and 6 mm in the axial
direction and almost disappears after 6 mm. This suggests the diminishing influence of the
fluid pressure, which is unable to sustain further expansion along the microcrack.
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Figure 7. The original (blue dots) and post-deformation (orange dots) interfaces between the microc-
rack and tumor region, as affected by the length of the microcrack.

The obtained volumetric flow rate and flow resistance are shown in Tables 5 and 6.
The impacts of the microcrack length are limited up to a certain threshold length, i.e., ap-
proximately 6 mm for the second model and the third model. After this threshold, further
increases in the crack length would have a very minor effect on the volumetric flow rate
and flow resistance. Compared to the baseline case of having a 3-mm-long microcrack,
further increasing the crack length would enhance the volumetric flow rate by 1.5% in
the second model with a cylindrical microcrack. In the third model with the enlarged
microcrack, the percentage increase from its baseline case is slightly higher, up to 3.4%. The
reductions in the flow resistance follow similar trends. With the longest microcrack length
of 9 mm, the enlarged microcrack would decrease the flow resistance by more than 17%
from the control without a microcrack in the tumor.

Table 5. Volumetric flow rate affected by changing the microcrack length.

Crack Length
Volumetric Flow Rate Qouter (m3/s) Change from the Baseline Case

The 1st Model The 2nd Model The 3rd Model The 2nd Model The 3rd Model

3 mm 8.592 × 10−10 9.451 × 10−10 1.000 × 10−9 NA NA

4.5 mm 8.592 × 10−10 9.568 × 10−10 1.028 × 10−9 1.3% 2.7%

6 mm 8.592 × 10−10 9.596 × 10−10 1.034 × 10−9 1.5% 3.4%

7.5 mm 8.592 × 10−10 9.604 × 10−10 1.034 × 10−9 1.6% 3.4%

9 mm 8.592 × 10−10 9.607 × 10−10 1.034 × 10−9 1.7% 3.4%
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Table 6. Calculated flow resistance for different microcrack lengths.

Crack Length
Flow Resistance Rflow (Pa s/m3) Change from the Baseline Case

The 1st Model The 2nd Model The 3rd Model The 2nd Model The 3rd Model

3 mm 2.328 × 1014 2.116 × 1014 1.999 × 1014 NA NA

4.5 mm 2.328 × 1014 2.090 × 1014 1.946 × 1014 −1.2% −2.7%

6 mm 2.328 × 1014 2.084 × 1014 1.934 × 1014 −1.5% −3.2%

7.5 mm 2.328 × 1014 2.082 × 1014 1.933 × 1014 −1.6% −3.3%

9 mm 2.328 × 1014 2.081 × 1014 1.934 × 1014 −1.7% −3.3%

3.3.2. Changing the Radius of the Initial Cylindrical Microcrack

We then examine the effect of the radius of the cylindrical microcrack on the fluid
flow and the tissue deformation. The radius of 0.207 mm is the corresponding size of the
tine, assuming no bounce. The extent to which the tissue bounces after the withdrawal
of the tine is unclear. In this study, the unknown microcrack radius is assumed as either
0.025 mm or 0.05 mm when keeping the microcrack length the same as in the baseline case
of 3 mm. Figure 8 shows the displacement of the microcrack–tumor interface as affected
by the radius of the microcrack. It is evident that an overall higher pressure field within
the microcrack would result in much larger tissue deformation and, thus, a larger shift in
the crack–tumor interface towards the tumor periphery. Compared to the baseline case
(radius = 0.05 mm) with a lateral displacement near the infusion surface of 0.03 mm, the
lateral displacement decreases by 53% when the crack radius is 0.025 mm.
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rack and tumor region, as affected by the radius of the original cylindrical microcrack.

Table 7 gives the results regarding how the radius of the cylindrical microcrack affects
the flow resistance. In the baseline case with a microcrack radius of 0.05 mm, the maximal
resistance reduction is 14%. In contrast, when the microcrack radius is 0.025 mm, the
enlarged microcrack in the third model only results in a less than 6.5% reduction in the flow
resistance when compared to the first model without a microcrack. The modest reduction
indicates the diminishing influence of the microcrack with a smaller initial radius. Larger
tissue rebouncing after the retraction of the tine would result in smaller overall tissue
deformation and a smaller impact on the velocity and pressure fields.
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Table 7. Flow resistance due to different microcrack radii.

Crack Radius
Flow Resistance (Pa s/m3) Reduction in Flow Resistance

1st Model 2nd Model 3rd Model 1st Model 2nd Model 3rd Model

0.025 mm 2.33 × 1014 2.25 × 1014 2.18 × 1014 N/A 3.5% 6.5%

0.05 mm 2.33 × 1014 2.12 × 1014 2.00 × 1014 N/A 9% 14%

3.3.3. Influence of the Transport Properties in the Microcrack

As shown in Table 3, two more cases of K2 are included as it decreases or increases by
50% from the baseline value. The influence of the permeability of the microcrack on the
pressure field is shown in Figure 9. When the permeability is doubled or tripled from that
in case (a), one can see that the pressure inside the microcrack becomes more uniform. This
would lead to the altered tissue deformation of the microcrack. Figure 10 illustrates the
tapered microcrack when the permeability is the smallest among the three cases. When the
permeability increases in case (b) and case (c), the almost uniform pressure field along the
microcrack causes the more uniform deformation in the lateral direction of the microcrack.
As a result, the volume of the enlarged microcrack increases. Note that, in the baseline
simulation (case (a)), the enlarged microcrack’s volume is 2.26 times the value of the original
cylindrical microcrack. Decreasing or increasing the permeability by 50% from the baseline
case would result in a microcrack volume of 1.9 times or 2.6 times the value of the original
cylindrical microcrack.
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microcrack and tumor region, as affected by the permeability of the microcrack: (a) K2 = 1 × 10−13 m2,
(b) K2 = 2.0173 × 10−13 m2, and (c) K2 = 3 × 10−13 m2.
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The flow resistance as affected by the permeability of the microcrack is listed in Table 8.
In the second model without tissue deformation, doubling or tripling the permeability
in the microcrack would increase the reduction in the flow resistance from that without
a microcrack by 3.2% or 5.0%, respectively. When the microcrack is enlarged in the third
model, the reductions are 4.3% and 7.2% greater, respectively. Overall, the smallest flow
resistance is found when the permeability is 3 × 10−13 m2 with an enlarged microcrack.
When compared to the flow resistance in the tumor without a microcrack, this reduction
could be as large as 17% (1.94 × 1014 Pa s/m3 vs. 2.33 × 1014 Pa s/m3).

Table 8. Flow resistance due to differences in the permeability of the microcrack.

Permeability (m2)
Flow Resistance (Pa s/m3) Reduction in Flow Resistance

1st Model 2nd Model 3rd Model 1st Model 2nd Model 3rd Model

1 × 10−13 2.33 × 1014 2.19 × 1014 2.09 × 1014 N/A N/A N/A

2.0173 × 10−13 2.33 × 1014 2.12 × 1014 2.00 × 1014 0% 3.2% 4.3%

3 × 10−13 2.33 × 1014 2.08 × 1014 1.94 × 1014 0% 5.0% 7.2%

3.3.4. Changing the Interstitial Fluid Pressure at the Infusion Surface

During an infusion process, the pressure at the infusion surface would significantly
affect the total volumetric flow rate; however, it should not influence the total flow resistance
if no deformation is considered. With tissue deformation as a factor, a larger infusion
pressure would result in a larger enlargement in the microcrack, thus leading to smaller
flow resistance. This section seeks to quantify the influence of the pressure at the infusion
surface by varying it from 1 × 105 Pa to 2 × 105 Pa and subsequently to 4 × 105 Pa.

Figure 11 provides the displacement of the microcrack–tumor interface during the
infusion process. As expected, the lateral displacement component of the interface is
approximately proportional to the infusion pressure. The maximal lateral displacement
increases 2.17-fold when the infusion pressure is doubled from 1 × 105 Pa to 2 × 105 Pa.
Doubling the infusion pressure again to 4 × 105 Pa results in a 4.22-times increase from the
first model.
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The values of the flow resistance as affected by different infusion pressures are shown
in Table 9. The results demonstrate that the flow resistance is independent of the infusion
pressure in a tumor without tissue deformation, in the first and second models. The flow
resistance decreases by 2.5% or 6.8% when the infusion pressure is doubled or quadrupled,
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respectively, in the third model with tissue deformation. This observation suggests that, at
higher pressure, the deformation of the tissue matrix enables easier fluid movement, thereby
resulting in smaller flow resistance. Compared to the first model without a microcrack, the
flow resistance with an enlarged microcrack is 18% smaller when the infusion pressure is
4 × 105 Pa.

Table 9. Flow resistance due to different infusion pressures.

Pressure (Pa)
Flow Resistance (Pa s/m3) Reduction in Flow Resistance

1st Model 2nd Model 3rd Model 1st Model 2nd Model 3rd Model

1 × 105 2.33 × 1014 2.12 × 1014 2.05 × 1014 N/A N/A N/A

2 × 105 2.33 × 1014 2.12 × 1014 2.00 × 1014 0% 0% 2.5%

4 × 105 2.33 × 1014 2.12 × 1014 1.91 × 1014 0% 0% 6.8%

4. Discussion

This study contributes to the field of tumor treatment by providing a quantitative
assessment of a novel method for the convection-enhanced delivery of drug-carrying
nanofluids. This method is innovative as it introduces a microcrack and expands the
microcrack due to tissue deformation. The results suggest that this is a viable option for
the minimization of backflow and the delivery of drugs to the entire tumor. Up to 18% of
the flow resistance reduction is predicted by an enlarged microcrack using the parameters
in this study. It is anticipated that introducing multiple microcracks, as shown using
retractable tines, would provide a significant resistance reduction. Therefore, it will decrease
the pressure in the vicinity of the infusion catheter to minimize the deformation there and
attenuate the backflow of the nanofluid. With minimal backflow through the catheter track,
more drug-carrying nanostructures would be delivered to cover the entire tumor.

One limitation of this study is the inability to properly integrate Darcy’s pressure
field with the tissue deformation in the numerical models. A two-way coupling system
that allows the pressure field and tissue deformation to impact each other would be ideal
in gaining thorough knowledge of the fluid dynamics and tissue response in the tumor
environment. However, due to the limitations of the computational tools utilized in this
investigation, the module used could only deal with small material deformation, leading
to one-way coupling only. This means that, while the pressure field can affect tissue
deformation, the updated tissue geometry cannot change the pressure field. To address this
shortcoming, a third model is created, which includes an enlarged microcrack based on the
geometry produced from the second model’s poroelastic simulation of tissue deformation.
The current work provides a workaround; it does not fully depict the dynamic interaction
of the fluid pressure and tissue deformation that happens in vivo. For example, tissue
deformation would change the porosity of the tumor, which could influence the pressure
and velocity fields in Darcy’s law. We contacted COMSOL’s technical support, and, after
several rounds of discussion, we were informed that extra COMSOL modules would need
to be added to our license. We are aware that, with the updated modules, two-way coupling
modeling using COMSOL is possible, as shown by other research groups [37]. This is a
limitation of our study, since we were not able to explore the coupling feature due to
the lack of research resources at our institution. Other options to implement two-way
coupling may include utilizing other commercial software packages. For example, FEBio,
ABACUS, and ANSYS are some of the finite element method simulation packages to
explore. The shortcoming of the current study highlight the need for more advanced
computational tools or software advancements that can handle fully coupled simulations,
allowing for the more realistic simulation of the intricate interactions occurring within the
tumor microenvironment during convection-enhanced drug delivery.
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In this study, our focus is on the overall resistance reduction induced by the microcrack,
without including a backflow channel in the vicinity of an infusion catheter. Without
a microcrack, backflow along an infusion catheter occurs, and it is significant. There
is strong evidence that adding a microcrack would cause some fluid to flow through
the enlarged microcrack, therefore alleviating the backflow along the infusion catheter.
However, the extent of this is unknown. Therefore, incorporating an infusion catheter
with tissue deformation into the current model would allow the thorough evaluation of
whether the inclusion of microcracks effectively reduces backflow and improves therapeutic
agent targeting. One could also explore the minimal number of microcracks necessary to
significantly decrease backflow. One previous study implemented an infusion catheter with
three retractable tines (Rex Medical) in patients [24]. They found that, using the retractable
tines to infuse ethanol to liver tumors, most patients did not experience the reflex pain
typically experienced when ethanol leaks through the backflow channel. This indicates that
the three microcracks facilitated the flow in the tumors, resulting in smaller backflow along
the infusion catheter. In addition, theoretical simulations could be developed to achieve
the more realistic representation of CED devices and their effects on the backflow. This will
entail not only fine-tuning the computational models but also undertaking experimental
validation to guarantee that the theoretical insights are transferable to real applications in
medication delivery.

Another noteworthy constraint of this study is its dependence on theoretical models
with uniform transport and mechanical properties, as opposed to integrating empirical
data on authentic tumor specimens. While the simulations quantify the possible influences
of microcrack introduction on medication delivery in tumors, the lack of experimental
validation with actual tumor tissue restricts the capacity to corroborate the findings’ rele-
vance in a real-world setting. The simplified model may fail to reflect the intricacies and
heterogeneities of real tumors, reducing the efficacy of convection-enhanced delivery (CED)
in clinical situations. In future studies, one could model the transport process based on
reconstructed realistic tumor models from imaging scans. Different layers/regions with
various transport properties could be included in the model. The modeling of the pressure
and velocity fields in realistic tumors with complexity and heterogeneity would enhance
the prediction capabilities of theoretical simulations.

One future study could be focused on nanostructure transport in tumors. In the current
model, we only simulate the fluid pressure field and velocity field. The current simulation
can be extended to simulate drug-carrying nanoparticle diffusion and convection in the
tumor. With the simulated fluid field, the transient process of nanoparticle spreading in
the tumor can be evaluated to understand the infusion duration and other strategies for
nanoparticle deposition in tumors.

Finally, although the use of microcracks has shown promise in improving therapeutic
drug delivery to tumors, the dynamic interaction between the microcrack and its surround-
ing tissue is unknown. The introduction of microcracks may impair the structural and
functional integrity of the tumor’s extracellular matrix, resulting in unexpected conse-
quences such as inflammation, edema, or even neuronal injury. Furthermore, the long-term
stability of these microcracks, as well as their propensity to mend or spread further, re-
quires future investigation, seeking to employ an effective yet safe delivery method for
the treatment of tumors. Moreover, experimental studies are warranted to evaluate the
performance of the proposed approach in tissue-equivalent gels, as well as in biological
tissue. Transparent gels would be very useful to observe progressing crack enlargement
and fluid flow pathways. In vivo or in vitro experiments on animal tissue are also critical to
understand the interaction between the microcrack and the surrounding tissue. Experimen-
tal validation is necessary to not only provide the extracted transport properties needed for
theoretical simulations, but also to help evaluate the assumptions and simplifications made
in the theoretical models. By comparing the simulation results to experimental results,
researchers may detect differences and improve the theoretical models to better reflect the
behavior of therapeutic drugs in actual tumors. A future comparison study would give
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useful inputs on the accuracy and relevance of simulation-based predictions, resulting in
accurate and successful tumor treatment.

5. Conclusions

This study presents the quantification of the improvement in drug delivery to tumors
in convection-enhanced delivery (CED) via the manipulation of a microcrack within a tumor.
We perform theoretical simulations to evaluate how the introduction of a microcrack in
tissue reduces the overall flow resistance in a porous tumor, as well as further decreasing
as the microcrack enlarges in a direct infusion process using CED. It is found that the
presence of a microcrack leads to significant modifications in the tumor pressure and
tissue displacement fields, with the fluid pressure field causing the cylindrical microcrack
to expand into a frustum shape. This enlargement results in the more than doubling of
the microcrack volume, indicating a substantial increase in the available space for fluid
flow. The introduction of an enlarged microcrack leads to a reduction in flow resistance
of 14% compared to the tumor without a microcrack. In the parametric analyses, a larger
microcrack radius, a longer microcrack, and/or a larger infusion pressure result in more
significant decreases in the flow resistance in the tumor, up to 18% from the tumor without
a microcrack. In conclusion, the findings from this study suggest that introducing a
microcrack into porous tumors is an effective strategy to enhance the fluid flow and,
consequently, the distribution of therapeutic agents using CED. By reducing the flow
resistance and facilitating the more uniform dispersion of drugs, microcrack formation and
enlargement emerge as promising techniques to improve the efficacy of cancer treatment in
porous tumor environments.
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