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Alocomotion analysis system for laboratory rats is presented, The system produces locomotion parameters
(LPs) in 4 different domains: force, space, time and frequency. Video images of the walking rats are used
to associate the system signals with individual limbs. Numerous LPs can be derived for every test run
when the rat walks through the system on the way to sweets and a personal toy placed at the exit. This
manuscript demonstrates that in order to differentiate SOD1-G93A mutant rat, a model of amyotrophic

;(g{)v:ogi;; A mutants lateral sclerosis (ALS), from a Sprague Dawley (SD) control rat at a pre-symptomatic stage, one has only to
ALS muta use 8 key parameters. These 8 parameters are the bio-markers of ALS. The spline-based transformed values
Locomotion of these parameters are used as explanatory variables of a logistic regression model. This model predicts

the probability that the examined rat belongs to the SOD1-G93A group. The model differentiates faultiessly
between the SOD1 and control groups from the very first time the rats walked through the system at 51
days old. This system provides a new paradigm for ALS diagnosis, and it can have a significantimpactonthe
development of new therapeutic procedures for ALS. The methodology presented in this manuscript can
further address the development and validation of therapeutic procedures for other neurological diseases

Logistic regression

that affect locomotion.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a serious neurodegenera-
tive disease that affects almost selectively motor neurons (Galan et
al.,2007).ALS is very difficult to diagnose in the early stages because
the symptoms are similar to those of other, often treatable, neuro-
muscular disorders where neurodegeneration does not occur. The
diagnosis of ALS is usually based on a complete neurological exam-
ination and various clinical tests. Since the initial symptoms of ALS
are unremarkable, the disease is often undetected in its early stages.
However, as more motor neurons fail, the muscles controlled by
them stop functioning normally. Eventually, the muscles weaken
and become paralyzed and, in most cases, a respiratory failure is
the cause of death.

At the present time, there is no effective treatment for ALS.
This is due in part to the motor neurons’ degeneration and
the contributions of other cells, known as glia, towards their
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demise. Current treatments help control the symptoms but they
do not stop the progression of the disease or cure it. Further-
more, the search for new therapeutic procedures has been hindered
by the lack of early and reliable diagnosis. Early detection of
ALS is essential for both identifying appropriate candidate ani-
mals for inclusion in the treatment group and monitoring the
progress and efficacy of the treatment. Thus, early detection and
the ability to assess the progression of the disease are critical
for the development of new and effective therapeutic treatments
for ALS.

Laboratory animal models have been used to study the progres-
sion of ALS in rats and mice. SOD1-G93A rats (Jackson et al., 2002;
Howland et al., 2002) have been accepted as animal model for ALS
due to their similarities to human ALS symptoms, including mus-
cle weakness, weight loss, chewing reflex, paralysis, and breathing
difficulties.

Researchers have investigated motor symptoms that detect ALS
early. Kafkafi et al. (2008) reported that a Pattern Array for data
mining of movement distinguishes control SD rats from SOD1-
G93A mutant rats at pre-symptomatic ages. The former exhibit
heavy breaking when moving along an arena wall and turning away
from it, whereas the SOD1-G93A mutants fail to exhibit this behav-
joral pattern, According to Kafkafi et al. (2008), these symptoms
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Fig. 1. A locomotion analysis system for rodents, The system measures LPs in 4 dom

ains: force, space, time and frequency. The measured forces are in vertical, longitudinal

and transverse directions. A video camera records bottom images of the rat that walks through the system, and through synchronization of the video images and load cell

signals, one can recognize the ground reaction forces of each individual limb.,

may enable researchers to test therapies that address intervention
rather than remediation.

This manuscript describes a quantitative method to diagnose the
presence or absence of locomotion dysfunction in a rodent model of
ALS. The diagnosis is based on a number of locomotion parameters
(LPs) generated at each stride of every limb as the animal walks
freely through a narrow passage to get to its individual toy and
food placed at the system exit. Using several repeated walks of ani-
mals with known disease conditions, we build predictive models
for ALS in terms of LPs that have been transformed through spline
transformations (Liu et al,, 2008). The transformed LPs are used as
explanatory variables of a logistic regression model for the prob-
ability that the examined rat belongs to the SOD1-G93A mutant
group.

The locomotion analysis system, described in this manuscript,
can measure numerous LPs for every test run. In this manuscript
110 LPs per animal per run are evaluated for their ability to identify
the presence of the disease. For each LP, we explore a nonlinear
transformation based on spline functions, which best predict the

presence of ALS. It is demonstrated that in order to classify SOD1-
G93A rats correctly one has to measure only 8 very particular LPs
per limb. It turns out that the system is capable of distinguishing
between the SOD1 mutants and control SD animals correctly from
the very first time the animal crosses the system.

2. Materials and methods
2.1, Design of the locomotion analysis system

The locomotion analysis system, introduced in Tasch et al.
(2008), underwent several enhancements. First, it was mounted
on a steel cart to improve its mobility (Fig. 1); also two highly
sensitive load cells (Transducer Techniques, 150 g #206757) were
mounted to measure the longitudinal ground reaction forces (GRF),
and four standard parallelogram tension/compression load cells
(Omega LCLB-2) were mounted to measure the transverse GRF.
Finally, a digital video camera (Sony, DMK 31BF03) was mounted on
the base shelf to record the bottom view of the walking rats. To con-

Table 1
Definitions of the 20 LMV evaluated in this manuscript.
No. Variable Units Definition
1 Fzmax Non-dimensional Maximum value of the vertical GRF component of a selected limb
2 Stance Time s Time duration that a selected limb is in contact with the floor
3 TFZmax Non-dimensional Time of Fzmsx normalized by the Stance Time of a selected limb
4 Fzmean Non-dimensional The mean value of the vertical GRF componentof a selected limb (f5yimeF2 dt/Stance Time)
5 Fz, 5! The Fourier transform of Fz summed over the first 50 Hz for a'selected limb (JsoFzdw)
6 Stride Non-dimensional Stride length of a selected limb calculated as the difference between two consecutive contact positions; the
contact positions are normalized by the flaor length, which is 13.25in. ‘
7 Fymax Non-dimensional Maximum value of the longitudinal GRF comiponent of a selected paw
8 TFyYmax Non-dimensional Time of Fypax divided by Stance Time ‘
9 Fymin Non-dimensional Minimum value of the longitudinal GRF component of a selected paw
10 T FyYmin Non-dimensional Time of Fymn divided by Stance Time
1 Fymean Non-dimensional The average value of the longitudinal GRF component of a selected paw [[s:rime Fy dt/Stance Time]
12 Fyw 5! The Fourier transform of Fy summed over the first 50 Hz for a selected paw [fspFy dw]
13 FXmax Non-dimensional Maximum value of the transverse GRF component of a selected paw
14 FXmin Non-dimensional Minimum value of the transverse GRF component of a selected paw
15 FXmean Non-dimensional The average value of the transverse GRF component of a selected paw [[stimcFX dt/Stance Time)
16 FyP Non-dimensional The mean value of the propelling (positive) longitudinal force of a selected limb
17 FyB Non-dimensional The mean value of the braking (negative) longitudinal force of a selected limb
18 NP Non-dimensional The number of samples in which the longitudinal force is propelling (positive in value); the sampling rate is
200Hz
19 NB Non-dimensional The number of samples in which the longitudinal force is braking (negative in value); the sampling rate is
200Hz
20 NPB Non-dimensional The number of times in which the longitudinal force switches sign from braking to propelling and vise versa
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Fig. 2. The outputs generated by the locomotion analysis system in a typical test run. The signatures of the left and right limbs are depicted on the left and right sides,
respectively. The transverse (Fx), longitudinal (Fy), and vertical (Fz) are normalized with respect to the rat's body weight and plotted as a function of time (s). The longitudinal

(Y) and transverse (X) limb positions are normalized with respect to the length and width of the floor plates, respectively. A video image of the bottom of the rat is also
recorded.
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Fig. 3. To associate a load cell signature with a limb the computer mouse is placed on a selected signature (vertical marker) and the most recent video image is displayed.
The load cell signature on the right from 0.33 to 0.49s is associated with the right fore limb.

trol the lighting two arrays of infrared LEDs were also mounted (see
Fig. 1). These enhancements resulted in a locomotion system that
records video images as well as vertical, longitudinal, and trans-
verse GRF and spatial (longitudinal and transverse) limb positions
of walking rats. The load cell data was recorded at a rate of 200Hz
and the video recording at 30 fps.

2.2. Obtaining gait measurements

4 SOD1-G93A mutant and 4 Sprague-Dawley (SD) control rats
from Taconic Laboratory (Germantown, NY) participated in the
study. The rats were all males and 4 weeks old upon their arrivalon 7
January, 2008. Each rat was housed in a separate cage with inversed
darkness/lighting cycle and food and water ad libitum. After weigh-
ing the animal it was placed at the system entrance, the gate was
opened, and the rat crossed the system moving toward its individ-
ual cylindrical toy and a treat of condensed milk, both of which were
placed at the system exit, This procedure was repeated up to three
times for each rat on a single day. After a period of 10 days of train-
ing and adaptation to the system, each animal was tested twice
per week and data was recorded from 30 January, when the rats
were 51 days old, through 24 March, 2008 or until the rats were 105
days of age, The database contained 163 test runs, where 96 records
were from SOD1 mutants and 67 from control SD rats. At the end
of the experiment, rats were euthanized by sodium pentobarbital
(150 mg/kg IP). Our protocol has been approved by the IACUC at
the University of Maryland, Baltimore County and the University of
Maryland, School of Medicine.

2.3. Locomotion parameters (LPs)

From the signals of 14 load cells the values of 20 LPs per limb
were evaluated for the left fore (LF), right fore (RF), left hind
(LH), and right hind (RH) limbs. The 20 LPs, listed in Table 1, are
non-dimensional except to Stance Time, Fz,, and Fy, that have
dimensions of 5,571, and s~!, respectively.

2.4. Logistic regression

In an earlier work we addressed modeling of bovine lameness,
and we used logistic regression to evaluate lameness predictions of
dairy cattle (Rajkondawar et al., 2002). In the current manuscript,
logistic regression models (Hosmer and Lemeshaw, 2000) are used
to predict the probability that an examined rat belongs to the
SOD1-G93A mutant group in terms of the LPs. This is expressed
mathematically as

exp (3 BiLP;)
1+exp () BiLP)

where the §; is the ith coefficient of the logistic regression model
and is estimated by appropriate statistical methods. Liu et al. (2008)
demonstrated that the accuracy of the predictions of such models
is significantly improved when the LPs are transformed via spline
transformations. An implementation of these transformations is
available in SAS (PROC TRANSREG) (SAS Institute Inc., 2004). The
probability that a rat belongs to the SOD1-G93A mutant group is

P(arateSOD1 group) = (1)
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Fig. 4. The load signatures generated b

y a single limb are identified and following the procedure shown in Fig. 3, the fore and hind limbs are marked with dashed and solid
heavy lines, respectively.
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Table 2
Definitions of 15 symmetry factors.
No. Variable Units Definition
1 Sym.Fzpay Non-dimensional Symmietry factor of Fzpy
2 Sym._Stance Time Non-dimensional Symmetry of Stance Time
3 Sym._T.Fzma Non-dimensional Symmetry of T.Fzmax
4 Sym.Fzmean Non-dimensional Symmetry of Fzyean
5 Sym.Fz,, Non-dimensional Symmetry of Fz,,
6 Sym_Stride Non-dimensional Symmetry of Stride
7 Sym._Fymax Non-dimensional Symmetry of Fymax
8 Sym.T.Fymax Non-dimensional Symmetry of T.Fymax
9 Sym.Fymin Non-dimensional Symmetry of Fy i,
10 Sym.T Fymin Non-dimensional Symmetry of T-Fym
n Sym.Fymean Non-dimensional Symmetry of Fymean
12 Sym_Fy,, Non-dimensional Symmetry of Fy,,
13 Sym.Fxax Non-dimensional Symmetry of FXmay
14 Sym.FXpin Non-dimensional Symmetry of Fxp;
15 Sym_FXmean Non-dimensional Symmetry of FXmean
hence evaluated as:
ex i TLP;
P(arate SOD1 group) = P (Z hi ') (2)

1+exp (3 ATLP)

where TLP, is the transformed value of LP;,

2.5. Cross-validation

Leave-one-out (Kohavi, 1995) method of cross-validation was
used to evaluate the performance of the derived ALS models. A sin-
gle test run from the original sample is taken as the validation data,
and the remaining test runs are taken as the training data. This pro-
cedure is repeated 163 times until every test run in the database is
used once as the validation data.

3. Results

A typical output of a single test run is depicted in Fig. 2. These
outputs are recorded from an array of fourteen load cells that sup-
port the left and right floor plates of the system sensor module,
as described in Tasch et al. (2008). Vertical (Fz), longitudinal (Fy),
and transverse (Fx) GRF components, as well as longitudinal (Y)and
transverse (X) limb positions, are plotted versus time (s) for both left
and right floor plates. In addition, bottom images of the walking rat

Table 4
Misclassification rate, in percentage, obtained by using a single LP or its associated
transform TLP.

Locomotion Misclassification Misclassification
parameter LP rate of LP (%) rate of TLP (%)
FyB 340 184
T.Fymax 331 203
Fymax 40.5 24,5
Fz, 41,7 25.2
FZmean 40.5 25.8
Fyu 374 258
NP 386 25.8
FXimax 41.7 25.8
FZmax 423 26.4
FyP 41.2 264
T-Fymin 393 27.0
Stance Time 36.2 27.6
Fymin 387 276
Fymean 36.8 276
Stride 40.5 28.2
FXrmean 36.6 28.2
NB 38.6 282
Sym_FXumin 41.1 288
T.Fzmax 40.5 288
Sym.T_Fymax 413 295
Sym_FXmax 41.7 319
Sym.Stance Time 38.0 325
FXmin 423 325
Fyo 40.5 33.1
Sym.T.Fzmax 41.5 33.7
Sym.Fymax 411 337
NPB 4.8 33.7
Sym FzZimean 37.4 34.4
Sym . Fzmay 423 35.0
Sym.T_Fymiy 420 : 35.0
Sym_Fymean 40.5 350
Sym.Fz,, 36.4 35.6
Sym . FXmean : 38.7 . 356
Sym_Fyuin ; 42.0 38.7
Sym.Stride 41.7 39.9

are recorded by a video camera. Fz, Fy, and Fx are normalized with
respect to the animal's body weight, and the longitudinal (Y) and
transverse (X) limb positions are normalized with respect to the
length and width, respectively of the sensor module floors. Thus
Y=0 denotes the entrance, and Y=1 denotes the exit, where X=0
denotes the center line and X =1 the far edge (see Fig. 2).

Table 3

Numericai values of the 20 measured LPs for each (LF. RF. LH, RH) limbs and the 15 symmetry factors for fore and hind limbs for a control rat #107,

Locomotion parameter (LP) LF RF LH RH Sym._LP¢ Sym.LPy
Fzpmax 0.7398 0.8116 0.7357 0.7254 ~0,046 0.007
Stance Time (s) 0.1550 ~.0.1400 0.2900 0.1750 0.051 0.247
T.FZmax 0.3226 0.7500 0.2241 0.2857 -0.398 -0.121
Fzmean 0.5288 0.5260 04221 0.3918 0,003 0.037
Fz, (s') 0.5326 0.5280 05194 0.4605 0.004 0.060
Stride 0.3463 0.,7202 0.4133 0.6818 ~0.351 ~0.245
Fymax 0.1517 0.3986 0.0178 0.3771 ~0.449 -0910
T.Fymax 0.8710 01786 05172 0,4571 0,660 0.062
F¥min -0.4292 ~0.1286 -0:1237 ~-0.0805 0.539 0.211
T.Fymin 0.2258 0.5714 0.1207 0.2857 ~0434 -0.406
FYmean ~0.1504 0.0948 ~0,0384 0.0660 4.411 -3.779
Fyw (571) 0.2769 0.2621 0.0842 0.2377 0.027 -0.477
FXmax 0.0493 0.1102 0.1040 0,1944 —-0.381 -0.303
FXmin ~0.0462 -0.0610 0.0231 0.0163 -0.138 0.175
FXmean -0.0005 0.0201 0.0661 0.1093 —1.048 ~0.246
FyP 0.0829 0.01m 0.0188 0.0029

FyB -0.1936 -0.0440 ~0,7466 -0,1794

NP 5 6 22 23

NB 27 53 7 13

NPB 5 2 5 1

This data is run #1 recorded on 21 March, 2008 and the rat was 102 days old. Except for Stance Time, Fz,,. and Fy,, all variables are non-dimensional.
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At any time the left and right floors can be in contact with one,
two, or no limbs. When a single limb is in contact with the floor
plate, we synchronize the load cell outputs that are recorded at
200Hz, with the most recent video image recorded at 30 fps. This
enables us to verify the association between an individual limb and
arecorded force signature. Fig. 3 demonstrates that the output sig-
natures of the right floor plate during the time period 0f0.33-0.49s
are generated when the right fore limb is in contact with the floor.
Similarly, one can associate the other limbs with the load cell sig-
nals they generate. Thus each fore and hind limb is designated with
dashed and solid lines, respectively (Fig. 4). This enables one to
calculate numerous LPs that characterize the locomotion of a rat
through each limb for every test run.

Table 1 lists the 20 LPs that were evaluated for every limb in
this manuscript. The list includes gait parameters that character-
ize the vertical (Fz), longitudinal (Fy) and transverse (Fx) forces, as
well as parameters that are associated with time, stride, and fre-
quency (Fzy and Fy,). In addition to the 20 LPs, listed in Table 1,
we derived parameters that capture symmetry between the left
and right sides of the animal. This is based on the hypothesis that
control rats exhibit left/right LP symmetry. Symmetry of any LP is
defined as

Lpleft - Lpright

Sym.LP = .
v LPleft + LPright

(3)

Eq.(3)canbeapplied toany of the 20 LPs listed in Table 1. Symmetry
can be evaluated for the hind (Sym_LPy) or the fore (Sym_LPg) limbs.
The symmetry factors, listed in Table 2, were evaluated for the fore
and hind limbs in this manuscript.

The 20 LPs, listed in Table 1, were evaluated for LF, RF, LH, and RH
limbs and the symmetry factors, listed in Table 2, were evaluated
for the forelimbs and hind-limbs for every test run of the 4 control
and 4 SOD1-G93A rats. A typical data for a single test run contained
values of 110 parameters, as depicted in Table 3.

In an effort to rank the 20 LPs and 15 symmetry factors, we
examined the effectiveness of each individual parameter, to clas-
sify correctly the rats into the SOD1-G93A mutant and control
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Fig. 5. The range of predicting probabilities that the examined rat belongs to the
SOD1-G93A group. Note large spread and big overlap between the control and
SOD1-G93A groups when 1 variable is used. When 4 variables are used the overlap
between the two groups somewhat shrinks, nevertheless when a 8-variable model
is used there is a complete separation between the control and the SOD1 groups.
This complete separation enables us to classify the rats correctly in each and every
test run.

groups. Using previous modeling experience, we transformed the
LPs by following the procedures introduced in Liu et al. (2008),
and Neerchal and Tasch (2008). The misclassification rate improved
remarkably when transformed LP (TLP) was used (see Table 4).
Therefore, we explored the idea of transforming the LP variables
using nonlinear transformations (TLP) to improve the prediction
performance of the model. One such family of nonlinear trans-
formations is obtained by expanding each LP in terms of a spline
basis (Schumaker, 2007). The misclassification performance of each
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Fig. 6. The probabilities that a SOD1-G93A mutant belongs to the SOD1-G93A group versus the rats’ age (D). Note that for every run the probability is above 0.95 for each of
the 4 SOD1-G93A rats. Further, note that the rats walk at their own pace and some rats are more active than others.
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Fig. 7. The probabilities that a control rat belongs to the SOD1-G93A group versus the rats' age (D). Note that for every run the probability is below 0.05 for each of the 4
control rats. Furthermore note that the rats walk at their own pace and will and some rats are more active than others.

individual TLP ranged from 18.4 to 39.9%, where FyB had the best
performance, and the symmetry factor of the stride (Sym_Stride)
had the worst (see Table 4),

Lastly, when the logistic regression model is based on the trans-
formed values of the top 8 variables listed in Table 4 (FyB, T_.Fymax,
Fy¥max, FZw, FZmean, Fyw, NP, and Fxmax), the range of probabilities
that a control rat belongs to the SOD1-G93A mutant group is from
0.000 to 0.033, and the range of probabilities that an SOD1-G93A
mutant belongs to the SOD1 group is from 0.957 to 1.000 (see Fig.5).
Hence, the 8-variable model has no overlap between the SOD1-
G93A mutant and the control groups, and its performance turns
out to be excellent from the very first test run of the 4 SOD1-G93A
mutants (see Fig. 6) and 4 control SD rats (see Fig. 7).

4. Discussion

This manuscript demonstrates that a logistic regression model
with the “proper” explanatory locomotion variables can differenti-
ate between SOD1-G93A mutant and control SD rats from the very
first time the examined rats cross a locomotion analysis system, and
the resultant classification is excellent, The ability to diagnose neu-
rological diseases early will allow researchers to test intervention
therapies and hopefully to find therapeutics that are neuroprotec-
tive and/or neurorestorative for serious diseases that are currently
incurable. The selection of the number of LPs used to construct a
logistic regression model was based on the misclassification per-
formance of each individual variable.

Sweets (condensed milk) and individual cylindrical toys that
are placed at the exit platform were used to encourage the rats, in
the current system design, to walk through the system, Rats walk
through the system at their own pace and will. This explains the dis-
crepancies in the number of test runs for different rats. Itis apparent

thatrats #102 and #106 do not walk as often as their test mates rats
#103, #104, #105, #107, #108, or #109 (see Figs. 6 and 7).

In this manuscript we examined 4 SOD1-G93A mutant and 4 SD
control rats. Obviously, the database consists of several repeated
observations. It is well known that repeated observations from the
same rat may be correlated. Correlated observations usually do not
affect the predictions adversely, but they cause the corresponding
prediction errors to be under-estimated. The current study demon-
strates the feasibility of the approach however a much larger study
with larger number of rats is needed. We plan to use the results of
this manuscript as a basis for a power study to investigate sample
size issues. Obviously, one needs to repeat the experiments with
larger populations. Nevertheless, the analysis presented here is not
based on visualization of gait abnormalities, as all the SOD1-G93A
animals were pre-symptomatic. It has been demonstrated that the
earliest change in locomotion is at the neuromuscular junction
where there is a process of denervation and re-innervation occur-
ring before any changes in the number of lower motor neurons have
occurred (Fischer et al., 2004).

It can be hypothesized that various other neurological disorders
that affect gait, such as Parkinson disease, Huntington disease, and
Multiple Sclerosis, could also be diagnosed in laboratory animal
models using the same methodology. The key will be to find the
“proper” LPs that constitute biomarkers of the disease one inves-
tigates. Furthermore, various pattern recognition strategies can be
employed to develop diagnostic tools for other neurological dis-
eases,
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