A New Fundamental Bioheat
Equation for Muscle Tissue:
Part |—Blood Perfusion Term

A new model for muscle tissue heat transfer has been developed using Myrhage and
Eriksson’s [23] description of a muscle tissue eylinder surrounding secondary (s)
vessels as the basic heat transfer unit. This model provides a rational theory for the
venous return temperature for the perfusion source term in a modified Pennes bioheat
equation, and greatly simplifies the anatomical description of the microvascular
architecture required in the Weinbaum—Jiji bioheat equation, An easy-to-use closed-
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| and venous retwrn temperatures using a model for the countercurrent heat exchange

d - in the individual muscle tissue cylinders. The perfusion source term calculated from

Al Ekpene this model is found to be similar in form to the Pennes’s source térm except that

there is a correction facter or efficiency coefficient multiplying the Pennes term,
which rigorously accounts for the thermal equilibration of the returning vein. This
coefficient is a function of the vascular cross-sectional geometry of the muscle tissue
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most muscle tissues. In part If of this study a theory will be presented for determining
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1 Introduction

In this paper a new simplified perfusion source term is derived
to describe the effect of blood perfusion on local tissue heat
transfer, Although this term is simitar in form to the well-known
Pennes souice term, it differs fundamentally in concept since
it describes the countercurrent thermal equilibration in a new
primary vascular heat transfer unit, a muscle tissue cylinder
surrounding secondary (s) vessels identified by Myrhage and
Eriksson [237 as the basic anatomical structure in skeletal mus-
cle in terms of vascular organization. This mode] thus combines
the basic features of the Pennes perfusion source terin and the
Weinbaum-Jiji countercurrent heat exchange mechanism. The
newly derived equivalent source term accurately describes the
temperature difference between the countercurrent artery and
vein and also relates this difference to the vascular geometry
of the tissue cylinder. A substantial simplification of the anatom-
ical description in the Weinbaum-Jiji approach is also possible
since anatomical studies have shown that the vascular geomelry
of this new vascular heat transfer unit is common to nearly all
skeletal muscle tissue.

The first quantitative relationship that described heat transfer
in human tissue and included the effects of blood flow on tissue
temperature on a continuum basis was presenied by Pennes
[20]. In this equation the effect of blood flow on tissue heat
transfer was assumed to be equivalent to a heat sink or source
whose strength is proportional to the volumetric perfusion rate
and the arterial-venous temperature difference T, — T,. Three
fundamental approximations in this equation have been ques-
tioned over the past decade: (i) 7, in this equation is unknown
and has been approximated by the local tissue temperature 7'
{#) T, was approximated by the body core temperature rather
than the local arterial supply temperature; and (iif) the local
thermal equilibration, like gaseous exchange, occurred in the
capillary beds and the small microvessels feeding these beds.
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the local arterial supply temperature at the inlet to the muscle tissue cylinder.

Reasonable agreement between the theory and experimental
results was obtained, although these fundamental approxima-
tions were never confirmed. The validity of the equation has
been largely based on macroscopic thermal clearance measure-
ments in which the adjustable free parameter in the theory, the
blood perfusion rate, is chosen to provide reasonable agreement
with experiments for the temperatuee decay in the vicinity of a
constant temperature or pulsed overheat probe.

Applying a thermal equilibration fength analysis, Chen and
Holmes {12] showed that thermal equilibration accurred prior
to the blood reaching the capillary beds. Later models by Wein-
baum et al. [33] predicted that all thermally significant vessels
in skeletal muscle were larger than 50 pm in diameter and
occurred as countercurrent pairs. In 1985, Weinbaum and Jiji
developed a new model equation for microvascular blood—tis-
sue heat transfer and then applied this new equation to model
peripheral tissue heat transfer [32]. Instead of attempting to
modify the Pennes equation, they took a more fundamental
physical approach, which related the local blood-tissue energy
exchange to the local microvascular geometry and flow in the
skeletal muscle. They found that in this tissue the predominant’
mode of heat transfer was the net heat loss to the tissue from
the incomplete countercurrent exchange that took place between
the paired vessels. The new Weinbaum—Jiji equation derived
in [32] to account for this heat transfer mechanism showed that
the thermal effect of the blood perfusion could be described in
terms of a tensor conductivity &y, which was proportional to
the square of the local Peclet number and dependent on the
direction of the vessel axes relative to the local macroscopic
lissue temperature gradient,

The Weinbaum-Jiji equation, like the Pennes equation, has
several limitations in the derivation of the expression for kyerr
() It requires that the thermal equilibration between the artery—
vein pairs not depart significantly from nearly perfect counter-
current exchange; (#) it involves a detailed description of the
branching microvascular geometry. The first limitation is usu-
ally satisfied in the muscle tissue at rest if the local vessels are
less than 300 gm in diameter, but this maximum vessel size
decreases rapidly as the flow rate is increased, The recent studies
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by Zhu et al. [39] have shown that the criterion for the validity
of the Weinbaum-Jiji equation, the ratio of the thermal equili-
bration length to the vessel length, Le/L < 0.2, breaks down
for a maximally vasodilated tissue preparation with 200 pm
diameter vessels, The first direct measurements of the thermal
equilibration length in the countercurrent microvascular artery—
vein pairs in Zhu et al. [38] show that this occurs when a Pe
> 3 mm, where Pe is the Peclet number based on the vessel
radius, The Weinbaum--Jiji equation can, therefore, not be ap-
plied without modification outside the peripheral tissue region
for which it was first developed and even there the criterion for
the validity of the equation can be violated at high flow rates
in a 200 pm diameter artery—vein pair when Pe > 30. Limita-
tion (if) requires that detailed anatomical studies be performed
to estimate the vessel number density, size, and artery—vein
spacing for each vessel generation, as recently performed in
Zhu et al. [397] for the rat cremaster muscle.

Many investigators have attempted to describe the effect of
blood perfusion an local heat transfer and to elucidate the differ-
ences between the Pennes and Weinbaum-—Jiji bioheat transfer
models or to demonstrate experimentally which equation is
more appropriate {1-5, 7-15, 18-19, 26—41]. Among those
investigations, important insight into the different regions of
validity of the Pennes and Weinbaum--Jiji models can be ob-
tained by analyzing a more complex three-equation model for
the artery, vein, and tissue and solving this system of equations
for an idealized one-dimensional tissue geometry. Using a more
rigorous three-equation model proposed by Baish et al, [4],
Charny et al. [10] have compared the solutions of the three-
equation model with the solutions of the Pennes equation and
the Weinbaum-—Jijt equation and concluded that the two approx-
imate formulations are each appropriate in different tissue re-
gions, The results for the three-equation model indicated that
the Pennes equation is valid for vessels >500 pm diameter,
where there is little countercurrent equilibration of the arterial
supply temperature; whereas for 50-200 um diameter vessels
countercuirent convective heat exchange becomes increasingly
important and the Weinbaum—Jiji equation is a more accurate
description. This behavior has been confirmed by the detailed
numerical calculations for a branching countercurent network
in Brinck and Wemer {7].

One way to correct the Pennes equation is to introduce an
*‘effectiveness factor’” in the perfusion ferm by determining the
net heat released from the countercurrent artery and vein to the
surrounding tissue. This concept was first used by Chato [11]
to investigate the thermal equilibration between countercurrent
vessels in an infinite medium with a linear decrease in flow due
to capillary bleed off. The ratio of the heat flow from the artery
to the vein over a certain axial distance to the total heat flow

Nomenclature

in the artery is defined as “‘effectiveness’ in Chato’s paper.
The axial variation of the artery and the vein temperature can
be calculated considering the energy balance between the blood
vessels. However, for an infinite medium this is a perfect heat
exchange, since all the heat leaving the artery will eventually
return to the vein. The ‘‘effectiveness” mentioned by Chato
[11] is a measure of the capability of the artery to rewarm the
counterciirrent vein and is determined by the thermal resistance
and mass transfer between the artery and the vein, Later, Wissler
[34, 35} suggested that the only correction needed in the Pennes
perfusion term was an ‘‘efficiency factor,”” which accounted
for the fact that the venous return temperature and the tissue
temperature might not be the same, even if the physical mecha-
nism niight not be precisely described by the Pennes model. In
the statistical model presented by Baish [2], the most probable
tissue temperature is 20 percent warmer than that predicted by
Pennes equation if the isolated countercurrent vessels are spaced
one diameter apart, This result implies an effectiveness of ap-
proximately 80 percent in the Pennes perfusion term. In the
recent theoretical study by Brinck and Werner {8], they have
used a spatially varying Pennes perfusion term to describe the
radial temperature distribution between the core and surface in
a human limb. Different efficiency factors are used in different
regions, which are a function of vessel location and blood perfu-
sion rate, and the values of the efficiency are determined by
fitting the temperature distribution curve calculated from a
three-dimensional vascular model [7]. While the concept of an
efficiency factor is not new, in no previous study has a distinct
anatomical structure been identified in which this concept could
be applied to determine the local venous return temperature and
hence the strength of a corrected Pennes source term.

Our new theoretical approach is divided into two parts. In part
1, the present paper, a basic heat transfer anatomical structure is
first identified that is common to all skeletal muscle tissue. The
muscle tissue eylinder surrounding countercurrent vessel pairs
() is analyzed and from this basic structure, the total heat
released in the tissue cylinder is determined by calculating the
temperature differenice between the countercurrent artery and
the vein at the inlet to the muscle tissue cylinder. Moreover, a
closed-form expression for the “‘efficiency function’” is derived
from these principles and a relatively simple modified form of
the Pennes perfusion source term is obtained. In part IT of this
paper, a theory will be presented for the local artery temperature
by analyzing the thermal interaction in the larger countercurrent
blood vessels that precede the s vessel tissue cylinders described
herein.

2 Anatomieal Background
In this paper a new theoretical framework is developed, which
draws upon the essential features of both the Pennes and the

a = vessel radius
a, = rafio of the artery to the vein radius
C; = specific heat of blood
k = thermal conductivity
! = vessel center to center spacing
L = half width of the muscle tissue
cylinder
Pe = blood flow Peclet number
- = radial coordinate
R = radial coordinate
Re = Reynold number
R, = dimensionless radius of the muscle
tissue cylinder
s = vessel eccenfricity
Tow = blood supply temperature at z = 0
T = venous returmn temperature at
z =0

vessels

i

vessels

A = gigenvalue
pr = density

coordinate
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Toca = local tissue temperature at R = R,
u = flow velocity component in the vein
axial direction in the blood

i, = average velocity component in
the axial direction in the artery
{J = dimensionless velocity vector in
the tissue region
v = flow velocity component in the
radial direction in the blood

x, y = Cartesian coordinates

¢ = polar angle in cylindrical

@4 = angle between the artery and the

Subscripts
a = arfery
b = bulk

f = fluid in vessels
fi = homogencous solution
p = particular solution

t = (issue

v = vein

0=z=0
Superscripts

* = dimensional parameters
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Weinbaum-Jiji moedel equations, The conceptual framework
for this theoretical approach, first proposed in [28], has been
developed from the comprehensive anatomical studies on the
arrangement of the vascular bed in different types of skeletal
muscles by Myrhage and Eriksson [23]. This study shows that
the vascular arrangement bears close resemblance in vardous
skeletal muscles. As shown in Fig. [, the basic vascular unit in
muscle tissue is a tissue cylinder of approximately 1 mm diame-
ter that runs the length of the muscle and is roughly parallel to
the surface of the muscle. Each muscle tissue cylinder consists
of several hundred individual muscle tissue fibers of approxi-
mately 40 um diameter and a parallel system of capillaries,
which are fed by a periodically spaced transverse system of
arteries and veins () that run perpendicular to the axis of the
muscle tissue cylinder. The most important feature of this ar-
rangement is that the basic muscle tissue cylinder is found to
be the same whether it lies in deep or more peripheral tissue
layers. This appears to be the best current model of the repetitive
vascular organization in the skeletal muscle tissue.

A key insight in the new bicheat theory presented here is
that the perfusion source term in the Pennes equation arises
primarily from the heat released by the blood to the tissue as
it transverses the length of each muscle tissue eylinder. The
blood supply for the muscle tissue cylinder comes from a
branching countercurrent network of supply vessels (SAV) that
originate in the large axial vessels of the limb. The relatively
short (1-3 mm) primary (P} arteries, which originate at peri-
odic intervals from the SAV vessels, run obliquely across the
muscle tissue cylinders and then branch into the long s vessels.
The s vessels (50100 pm in diameter) run along the axis
of each muscle tissue cylinder. The length of the s vessels is
determined by the spacing of the P vessels along the SAV
vessels and is typically 1015 mm. Each s vessel pair supplies
a roughly periodic array of perpendicular ¢ vessels (terminal
arterioles that feed the capillaries) that radiate in all directions
from the central axis of the tissue cylinder.

The spacing of the 7 vessels is the typical length of a capillary
bed in the direction of the muscle fibers, 0.5—1.0 mm. In our
model the ¢ vessels are treated as a continuously distributed

uniform bleed off through the walls of the 5 vessels, which can
be viewed as porous cylinders. The s vessels are not perfect
countercurrent heat exchangers and the perfusion source term
arises from the net heat loss to the tissue from the vessel pair.
The thermal equilibration occurs along the length of the ther-
mally significant 5 vessels rather than in the ¢ vessels, since the
f vessels are typically 2040 pm in diameter, and as shown in
Weinbaum et al. [33, 18], are in thermal equilibrium with the
local tissue. For all practical purposes, blood entering the ¢
vessels from the s artery is at the vessel wall temperature of
the s artery and blood returning to the s vein is similarly at its
local wall temperature. This sitvation differs fundamentally
from the blood entering or leaving the SAV vessel pair that
supplies the P and s vessels where the arterial inlet and venous
return temperatures both differ from the local tissue tempera-
ture.

Elementary thermal equilibration analysis [33] reveals that
there is only a minor change in temperature along the P vessels
because of their high Peclet number (20— 100) and short length

~(1-3 mm), and the primary thermal equilibration is achieved

throngh the countercurrent exchange that occurs along the
length of the s vessels. Since there is little change in temperature
along the P vessels, the local arterial supply and venous return
temperatures (T, and T,) to the supply artery and vein (SAV)
are effectively the same as the entrance temperature of the s
vessels in the muscle tissue cylinder. Therefore, the boundary
value problem for the muscle tissue cylinder can determine the
venous return temperature and the local artery—vein tempera-
ture difference, in ferms of the tissue cylinder geometry, Peclet
number, and the local average tissue temperature T at the bound-
ary of the tissue cylinder. This solution for the vessel tempera-
ture difference at the inlet of s vessels provides the long-sought-
after expression for the perfusion source term in our modified
Pennes equation.

The vascular ultrastructure sketched in Fig. 1 is a much more
general description of skeletal muscle than the three-layer model
for peripheral tissue proposed by the senior author in Weinbaum
et al. [33] and Jiji et al. [18]. This three-layer model has been
applied by several investigators to deep tissue and used to de-

muscle
cylinder

BF

0.5 rm

&— 300-1000um dia.

Fig. + Macro- and microvascular arrangement in the thin cat tenuissimus muscle {top of drawing) and the thick
biceps femoris (BF). Terminal arterioles and venules {t), which are 20-40 um in diameter, branch at a spacing
of approximately 0.5 to 1 mm from the secondary vessels (s}, which are 50-100 pm in diameter, The s vessels
branch at about 1-2 mm from each other at equal Intervals from the primary arteries and veins (), which are
100-300 pm in diamster, The primary arterles and velns arise at a spacing of 1~2 cm from the maln supply
artery and vein (S8AV), which are 300-1000 um In diameter, Capiliaries (¢) are distributed throughout but are
shown in only a fow locations. From {23] with permission.
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scribe heat transfer in an entire lHmb [7, 10, 36]. The key
difference between the three-layer and the new conceptual
model is the identification of an actual physiological structure
in the new model, 2 muscle tissue cylinder surrounding s vessel
pairs, which is a common fundamental unit for nearly all skele-
tal muscle tissue, In the three-layer meodel 8 to 10 generations
of brauching were identified with the largest vessels starting at
the core of the limb, In [7, 10] a conceptually different tissue
cylinder was introduced that is associated with periodically dis-
tributed vessel pairs, which diminish in size with each suc-
ceceding vessel generation [7, 10]. The peripheral tissue was
assumed to start with vessels 300 ym diameter or smaller. These
300 pm vessels are actually the P vessels in Fig. 1 and it was
not previously realized that the P vessels and their branchings
to s and ¢ vessels was a space filling repetitive arrangement that
was present at all tissue depths.

Interest in modeling countercurrent vessels in perfused tissue
and limbs has motivated several recent solutions for the heat
transfer between two vessels embedded in a tissue cylinder [36,
41]. Wu et al. [36] presented a new analytic solution approach
for treating any finite number of vessels arbitrarily positioned
in a tissue cylinder with surface convection. Although the
boundary conditions on the tissue cylinder in Fig. 1 differ from
that in [ 36] and the blood vessels have axially varying velocities
rather than a constant blood flow rate as in [36], it is possible
to extend the analysis and obtain a closed-form expression for
the venous return temperature of the s vessels and thus a new
expression for the perfusion source term in a Pennes type bio-
heat equation. :

3 Formulation

To derive the new perfusion source term, we first simplify
the vascular architecture for the muscle tissue cylinder in Fig.
1 as shown in Fig. 2. The local arterial temperature at z = 0,
the branching point of the s vessels from the P vessels, is Ty,
and the unknown temperature of the blood returning to the P
vein is T,5q. Since the difference between T, and 7,49 deter-
mines the total heat lost in the tissue cylinder, we seek a closed-
form analytic expression for T, as a function of T,,, the
local tissue temperature (7ji..a), the s vessel-tissue cylinder
geometry, and the local perfusion rate.

Referring to Fig. 2, the principle simplifying assumptions of
the model are: (i) Both the flow and temperature fields are
quasi-steady on the time scale for the thermal equilibration of
the tissue cylinder; (#) the temperature at the outer radius R,
of the tissue cylinder is equal to the local tissue temperature
T10cat, Which is constant along the axial direction. This assump-
tion is reasonable since the radius of the tissue cylinder R, is
much larger than the radii of the s vessels that run along its
axis and this direction is roughly parallel to the skin surface
{see assumption (vi}). Note the walls of the tissue cylinder are

not adiabatic and the thermat energy that leaves the s artery can
gither pass through the boundary of the tissue cylinder or be
recaptured by the returning s vein; (fif) the s vessels are part
of an axial arcade, and at the midpoint between two P vessels
(z = L), the blood velocity vanishes in both the axial artery
and vein due to symmetry and continuity; (iv) the 5 vessels are
viewed as long conduits with leaky walls and a uniform perfu-
ston is assumed along the axial direction; (v) the radii of the s
vessels do not vary in the axial direction and thus in view of
(iv) the blood flow velocities vary linearly along the axis;
(vi) axial conduction in the tissue cylinder is neglected. During
exercise, when the blood flow rates are high, countercurrent
flow is the dominant mode for axial thermal equilibration in
comparison with axial conduction. When the blood flow rate is
low, axial conduction will also be small since the s vessels run
primarily parallel the skin surface rather than in the direction
perpendicular to the skin swrface in which the largest tempera-
ture gradient occurs. Considering that the length scale of the
tissue ¢cylinder (~6 mm) is usually much shorter than the char-
acteristic length of temperature gradients produced during hy-
perthermia or through metabolism, large temperature gradients
in the axial direction on the length scale L are unlikely;
(vii) the temperature gradient J7,,/0z in the convective term
of the vessel energy equations can be approximated by the
axial gradient of the vessel bulk temperatures, d7,,.5/dz, as
previously justified in [41].

The nondimensional parameters and vartables are defined as:

s 5 I* r¥ ¥
Sa:_,3u=:‘,l=—,3'},':'—*‘,?‘“:_,
as aq g az ag
R* R} z= g L*
E-_v':Rr=_.s Z:'—.':au:_.)Lz——v
ak a¥ a¥ a¥ a¥
2p;Crau, ud %0 — T&
ut fNocal
. Pea= r 1 ‘u:w;;Ta.u.lz - - (l)
f Ug Fo — Thoca

Here the subscripts ¢, v refer to the s artery and vein, and
asterisks denote dimensional variables. a is the vessel radius
and s is vessel eccentricity. All length variables are scaled by
the artery radius, aZ. / is the vessel center to center spacing. R,
is the tissue cylinder radius. The basic geomelry, symbols, and
the coordinate system are sketched in Fig. 3.

The steady-state velocity field in the artery and the vein
of the 5 vessel pair can be obtained by solving the Navier—
Stokes equations for an incompressible fluid. As shown in
the appendix, for a uniform bleed off rate from the s vessels,
the inertia terms in the axial momentum equation are of
O(Re,a¥/L*) times the viscous terms, and in the radial mo-
mentum equation the radial pressure gradient is of
O(L*%g¥?). Thus, the motion in the radial direction is

Fig. 2 Idealized modet of the s vessel muscle tissue cylinder. Primary vessels (P) are shown at each end of
a periodic unit In the s vessel arcade. At the location z = L, the blood flow velocity is equal to 0. White only
two cylinders are shown, the tissue is filled with these repeating unlts as indicated by the branching of the P

vessaels,
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Fig.3 The geometry of the cross-sectional plane and coordinate system
in the muscle ssue cylinder

found to be mitch smaller than the motion in the axial direc-
tion. Since aX/L* is O(107%) and the Reynold number Re,
is at most O 10), Re,a¥/L* < | and the governing equations
for the velacity field can be greatly simplified. As shown in
the appendix, the solutions for the velocity components in
the axial and radial directions ¥ and v¥ in the artery are

given by
(12N -
uF = 21:,,-0(1 — E’;) (l - aé‘z) (2a)

uhat* fr¥ ¥
Uf - cD.a (___a___ a (21})

L Ngx  2g%°

where w3, is the average velocity at the entrance z = 0 of the
s artery. Bquations (2a) and (2b) apply downstream of a short
entrance region, which for low Reynolds flow is less than two
vessel diameters [16].

The dimensionless energy equation for the artery can be writ-
fen as:

18 ar, 181_ oz _sza,,
r‘,c‘)ra( 8:,,)+ 2 o2 Pe, (I )(l ra)

+ Pe, —- !
2L

One can show that the first term on the right side of this eguation
is O(R,) larger than the second term except as z approaches L
where the first term vanishes. However, as will be shown later
in the results section, one finds that the half length of the tissue
cylinder L is larger than the thermal equilibration length. Thus,
when z/L is near I, thermal equilibration has already occurred,
and both terms on the right side of Eq. (3a) vanish since there
is no heat exchange between the vessels and the tissue. The
second term can, therefore, be neglected for all z/L. One can
draw the same conclusion for the vein following similar analy-
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sis. Introducing the above-given assumptions, the governing
equations for the artery and the vein reduce to

lﬂ.(r oL\ , L oL,
ra O, \ " O, riag?

=Pea(1——)(1— )d(i“*’ rm=1 (2)

18 ( ar) L LT
r, r, or, r a¢d

vy AT
=J£”Peﬂ(l—§)(l—§:)—df, ro=a, (3)

The tissue temperature field in the cross-sectional plane can
be viewed as the temperature field gencrated by a line heat
source—sink pair representing the s vessels in a porous media
with convection. The velocity field U satisfies Darcy's law and
represents the flow through the ¢ vessels and their subscquent
branchings. This potential flow field due to the bleed-off from
the s vessels can be approximated by the flow between an equal
line source and sink located along the axes of the s vessels.

V3, =Pe, U-VT,, R=R, (4a)

One can show that the convective term generated by the capillary
bleed off is of O(R, Pe,/2L) compared to the conduction term
and thus, at least for resting conditions, insignificant in the tissue
region. If one neglects the fast term in Eq. (4a) and axial conduc-
tion, for the reason mentioned at the beginning of this section,
the governing equation for the tissue region reduces to

aT, 1 8%, _

R6R ( BR) % 84:2 =0, R=R, r,>1, rn>a (4)
The boundary conditions on the vessel walls are subtle. Since,
as already noted, the thermal equilibration in the t vessels is
almost instantaneous, the arterial and venous blood at the wall
of the s vessels is the same as the tissue temperature at r, = 1,
and r, = a, and the latter temperature is the same as the blood in
the ¢ vessels when it returns or exits the 5 vessel pair. Therefore,

T.=1T, ra=1
=T, n=a {3)

For the energy flux both diffusive and convective fluxes must
be considered,

. . 9 N
6Tﬂ":l‘Pea'uiTalrﬁﬁl ='"g': + P U Ttlr =1
ar, i, ar, %
v ¥ T,
al+Pea”—Tu|,r:ar—~@+P u* ——T]sma  (6a)
e 50 dr. uf

However, from continuity v¥ = U* and v¥ = ¥ at r, = 1 and
r, = a,, respectively, and T, = T,, T, = T, Thus, Eq. (6a)
reduces to ,

o1, _ 9%, at r,=1

r, By’ ) “

ar, o7,

N T A s v Ty 6
ar, o, T 2

Finally, the boundary condition on the tissue cylinder surface
is given by

T.=0, at R=2R, (7}
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Note that boundary condition (7) is esseniial to the analysis
since it requires the blood to equilibrate to the local tissue
temperature in the small vessels. If an adiabatic or periodic
boundary condition was applied at R, there would be no net
heat loss through the boundaries of the tissue cylinder and one
would end up with the trivial result that T4 = Typ. In Fgs.
(2) and (3), T, and 7}, are artery and vein bulk temperatures,
respectively, These bulk temperatures are defined as

T = Hf f Tl — rDrdr.dd, (8)

e 2 [ [ (s Bt

4 Solution for Countercurrent Flow

A theoretical solution to the complicated boundary value
problem summarized in the last section can be obtained by
modifying the solution procedure outlined by Wu et al. [36].
The simplifications introduced in the goveming Egs. (2), (3),
and (4), and the boundary conditions enable us to separate
variables and solve the boundary value problem in the cross-
sectional plane independent of that in the axial direction, Using
this appreach, the axial inferaction between vessels is reduced
to a coupled system of ordinary differential equations for the
axial bulk temperature variation in each vessel.

The solution for the temperature in the artery, the vein, and
the tissue is decomposed into a particular solution and a general
solution, They are expressed as;

Ta=(r3__1_rgﬁ§)% 1_5 %
4 4/ 4 L) dz

(9

+ %@5&)« a%mPca(l - %) % + T, (10)
+%ﬁ([_%)%+ﬂ (11)

T =1n4r"Pea (1 H%) d;":b
+!“li%fa_")a3zwen(l L) d;;bJrTf‘ o

where 7}, the homogencous solution in the three regions, is
given by

dTab

Ty = {[bo + E bR cos [n(¢ — Pa=u)]]

n=}

+ [eo + 2 e,R"cos [ndllaiu,

dT‘b}Pea (1 —5) (13)
n=\ dZ L

The solutions (10)- (12} for the blood vessels and the tissue
satisfy matching conditions (5) and (6) on the vessel surfaces,
Using contour integrations and residue theory as outlined in
the appendix of Wu et al, [36], one can obtain closed-form
expressions for the coefficients b, and ¢, by applying the bound-
ary condition at R = R,
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by = (—In R)/4 (14)

co = [~In (R/a,)]/4 {(15)

by =53/ (4nR¥™), n=12,...® (16)
=s2/(4nR?™), n=12,...® (17)

The temperature solutions in the artery and vein are now
used to determine the bulk temperatures 7, and 7., . Substituting
Eqgs. (10} and (11) into Egs. (8) and {(9) and evaluating the
double integrals, one can relate the vessel bulk temperaiures to
their gradients:

T =940 —— dTaﬁ + Ay — dT,,;, (1 —— | Pe, (18)
dz dz

Tio= LA ety 4, dr‘*}(z - —) Pe,  (19)
dz dz

where Ay, are functions of the local vascular geometry only.
Applying the summation equality,

—sIn (1 = 2pcos ¢ +p?), |p| <1

Z “—cos (ne) =

n==l

one obtains compact and easy-to-use expressions for the A}y _»:
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Ay = [Z b,y cos (nehy) + 1“4(’)]
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411!‘1[7{\/1'—"—*“}?—-“'1"“%?‘] (20¢)
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The coupled equations (Eqs. (18} and (£9)) for the vessel
bulk temperatures are linear, ordinary differential equations that
can be solved once the appropriate boundary conditions in the
axial direction are specified. For countercurrent flow, these

I

Jboundary conditions are the prescribed bulk temperatures at the

inlets of the vessels. The arterial inlet temperature T,,{0) is
always equal to 1, while the venous inlet temperature at z = L
is equal to the tissue temperature, i.e., T, (L) = 0. The latter
assumption is reasonable, since at z = L the flow is zero and
one has achieved thermal equilibration between the vessels and
the tissue since the countercurrent flow is the only driving force
for the local axial temperalure gradient.

The general solution of Egs. (18) and ([9) is an eigenfunc-
tion of the form (1 — z/L)™, where the eigenvalue A, can be
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negative, positive or a complex variable, and T, and 7, are
arbitrary combinations of all possible eigenfunctions. Of the
two real eigenvalues (complex eigenvalues are physically im-
possible for this application), one is positive () and the other
is negative {Az). Due to the boundary conditions mentioned
above, one can exclude the eigenfunction with negative eigen-
value (A;). Therefore, the solutions of Egs. (18) and (19) are
given by

Tab — (1 - zIL)B“Pea

T = Too1 ~ 2/ L)%™ (21
where
B = (A + Ap) + \/(An + An)® — 4(AuAy — Andy)

—2(ApAn — Apdy)

(22a)
] Al
Two=————— 22b
T BAn  Ap (220)
AT = Tuo = Tug = | — Ty = 1 + —— ¢ 411 (22¢)
atQ Y=l R+ BA;: A]z

It is clear that the eigenvalue A, is proportional to the cylinder
length L and inversely proportional to the flow Peclet number.
However, the venous retum temperature T, is only a function
of the parameters A;; ~ Ay, and the latter depend only on the
local cross-sectional geometry, Ty is thus independent of the
flow Peclet number and the tissue cylinder length L.

If there is no bleed off (L — w), the expressions for T,y and
T.s0 will become

— Bzf!
Tab =g 5 Pz,

T = Tope ™% (23)
where the coefficient B and 7,,, are still given by Eqs. (22a)
and (22b). The thermal equilibration length for both the artery
and the vein will be Pe,/B. The presence of the r vessel bleed
off from the s vessels thus changes the nature of the solution
from an exponential to 2 power law decay.

5 The New Modified Perfusion Source Term and
Bioheat Equation

The dimensionless temperature difference between the ves-
sels at the entrance of the tissue cylinder, AT = (T, — Tos) =0
= 1 — T, is the key parameter that determines the average
heat loss per unit volume (g;, W/m?) inside the tissue cylinder.
It is given by

2 o . -
@ (Wim?) = priCrma¥ UZ‘.(ZTEF%G — Tio)
TRFL*

(24)

Introducing the definition of volumetric perfusion rate, w, =
(maF*u¥)/(xRF’L*), and the dimensionless temperatures,
one can rewrite expression (24) as

g W’y = p,Cow, AT(Thy — Thaear) (25)

where AT is given by Eq. (22¢). If one substitutes the modified
perfusion source term expressed by Eq. (25) and the metabolic
source term ¢, into the conventional heat conduction equation,
one obtains a modified form of the Pennes equation,

ar1F
~C, 7; = VENT} + psCw, AT (TS, — TE) + g (206)
. Expression (25) for the countercurrent perfusion source term
is similar to the Pennes perfusion term except that there is a
correction coefficient, AT, given by Eq. (22¢), which accounts
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for the fact that the venous return temperature T, is not the
local average tissue temperature. AT is equivalent to a heat
exchanger effectiveness and plays the same role as the efficiency
functién introduced in [8] except that one is dealing with a
different concept for the tissue cylinder and, as we show below,
AT is independent of the flow and depends only on the muscle
tissue cylinder geometry in contrast to the results in [8] where
AT is a function of Pe.

To simplify the expression for the venous return temperature,
we consider the case of equal size blood vessels symmetrically
positioned relative to the cylinder center, i.e., @, = 1, and 5, =
s,. If the mass flow in each vessel is the same (alu, = —1),
the Ay coefficients in Egs. (20a~d) reduce to

I 52 11
Ap = ~Ap = — z{ln [R,(l - R_?)] +ﬂ} (27a)

2 4
A = Ay = L [&\/I _2_541_"‘%4,5_"] 216

4 l R! Rf

The final form of the correction coefficient AT thus simplifies
for an artery and vein of equal size to

A Al
[ =ty (SR
12 12

AT = (28)

Here Ay, and Ay, are given by Eqs, (27a) and (27b), respec-
tively, Equation (28) shows that AT involves only two coeffi-
cients which are easily calculated.

¢ Results

From this analysis, the correction coefficient AT is only a
function of the vascular geometry of the muscle tissue cylinder,
The parameters needed to calculate AT are the ratio of the
tissue cylinder radius to the artery radius, R,, and the relative
locations of the countercurrent vessel pair in the cross-sectional
plane. Several investigators [6, 17, 20—247 have described the
vascular arrangements of various skeletal muscles and have
measured the dimensions of the intramuscular vessels and the
muscle tissue cylinder. These measurements are summarized in
Table 1. Usually, the radius of the secondary artery is about
25-50 pm and the corresponding values for the venous vessels
are about 50 percent larger. The tissue cylinder radivs is approx-
imately between 5001000 pm. For different skeletal muscles,
these values may vary, but the ratio of the tissue cylinder radius
to the arfery radius of different muscles in Table 1 does not
vary greaily and the mean value of R, is approximately 20.
Thus, for other skeletal muscles that are not listed in this table,
one expects to obtain similar values for R,. Anatomic studies
show that the s vessels are closely spaced countercwrent ves-
sels, which are located near the center of the tissue cylinder.
Therefore, in this paper, we assume the countercurrent pair has
small eccentricity in the tissue cylinder and the vessel center to
center spacing varies from 2 (touching configuration) to 6.

The blood flow Peclet number in the s artery (50—100 ym
dia) can vary from 5 (resting state) to 50 (exercise). Figure 4
shows how this blood flow Peclet number variation influences
the axial temperature variations in the vessels for a fixed ..
One notes that the axial variation of the vessel bulk temperatures
is significantly altered by changing the Peclet number, However,
the venous return temperature at z = 0 is independent of Pe,.
In section 3, we assumed that the velocity vanishes at the mid-
point z = L between the P vessels. This half-width L of the s
vessel arcade can also be viewed as a characteristic length re-
flecting the rate of capillary bleed off from the s vessels. Thus,
changing I. can show us the effect of the bleed off on the local
heat transfer. The effeet of L on the axial thermal equilibration
length of the artery is illustrated in Fig. 5 for different blood
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flow rates, Pe, = 5 (testing state), 25 (moderate fow), 50
(exercise) for mean representative values of R, and {. The artery
thermal equilibration length is the distance over which the artery
bulk temperature decreases by a factor of e. This figure also
compares the thermal equilibration lengths with and without
capillary bleed off and the light lines (with bleed off), Eq.
{21}, will approach the heavy lines (without bleed off), Eq.
(23), when L is infinity. From the data in Table | the most
likely range of L is from 150 to 250. Increasing L for a constant
inflow Pe, is equivalent to decreasing the capillary bleed off
tate per unit cylinder length. At the lower capillary bleed off
rates (larger 1) the thermal equilibration length is found to be
almost proportional to the inflow Peclet numnber and the thermal
equilibration length is a weak function of the rate of capillary
bleed off. At high flow conditions (Pe, = 50) increasing I
greatly increases the thermal equilibration length, whereas at
low flow conditions, the axial thermal equilibration is almost
unchanged since blood flow in the vessels contributes little to
the axial thermal interaction.

The theoretically predicted temperature profiles in the center
plane y = 0 of the countercurrent vessel pair are shown in Fig.
6 for two vessel center-fo-center spacings, I = 2 and 6, The
temperature profiles have a similar shape at all values of z, but
the peak temperature decays with axial distance as shown in
Fig. 4. In this figure, the artery and the vein are symmetrically
located on the left and the right side of the x axis so that [ =
25, = 25,. One notes that the maximum and minimum points
are located inside the artery and vein, respectively, and due to
the countercurrent rewarming there is no sharp minimum for
the vein.

We have examined the effects of several factors on the venous
return temperature 7,5 and the correction coefficient AT in Egs.
(24) and (25). Please note that the larger AT, the lower the
venous return temperature. The dependence of AT on the tissue
cylinder radius is shown in Fig. 7 for several center-to-center
spacings. When the ratio of the cylinder radius to the artery
radius, R,, is less than 50, the maximum dimensionless venous
return temperature that can be achieved is found to be 0.45(AT
> 0.55). Thus, even for the touching configuration (I = 2)
more than half of the heat leaving the artery is lost to the outer
boundary of the tissue cylinder and, therefore, it is hard to
rewarm the countercurrent vein. QObviously, a change in the
tissue cylinder size leads fo a change in the conduction resis-
tance between the countercurrent vessel pair and the tissue cyl-
inder outer boundary. Increasing R, causes a decrease in AT
since more heat leaving the artery eventually will retum to
rewarm the countercurrent vein rather than being lost to the
tissue cylinder. Eventually, when R, approaches infinity, perfect
countercurrent heat exchange will be achieved so that AT will
approach zero. However, it is clear from Fig. 7 that this occurs
for R, 3 50, It is also observed that when the ratio of the vessel

spacing to the cylinder diameter I/ R, is larger than 0.75, more
than 90 percent of the heat leaving the artery will be lost to the
Table 1 Geometric parameters in muscle tissue cylinder
Muscletype | Radiusof | Radiusofthe |Redius of the {Cylinder| Half fengthof | Ry
' the primary [seoondary artecy|  terminal radius | tissus cylinder
artery (uo)|  {a, ') (um) _ Jarteriole (um)) (&) | &) (mm)
Tenufssamus | 40-63 30-38 10-15 560% 62 14-18
Diceps femoris | 63.133 2540 1528 920 [ 23-36
Gastrocnemius | 108-173 3545 1820 940 J— 20.26
(lateral bead)
Gastrocnemius | 80-155 30-59 1525 614 | e 1220
{media head)
Soleus 50-193 25-55 13-23 444 - 8-17
Hxtensor Halhiels]  -——— ~25 4-6 400* 6.5 ~16
Proprius Muscls

* equivalent radius
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Fig. 4 The effect of blood flow Peclet number on the axial temperature
distribution

tissue cylinder, i.e., AT > 0.9, Under these conditions the origi-
nal Pennes equation is a good approximation for the perfusion
source term, Since I/R, lies primarily in the range 0.05 to 0.4,
this occurs only at the largest spacing of the 5 vessel pair, [ =
6, and values of R, < 8.

Figure 8§ shows how the vessel center-to-center spacing (/)
influences AT for the case of equal and unequal sized vessels
symmetrically positioned relative to the tissue cylinder center
for a representative R, of 20. One notes that AT decreases
substantially due to the effect of countercurrent heat exchange
as I approaches 2, the touching configuration, where AT has
the limiting value of 0.61. Countercurrent heat exchange is
an important consideration for s vessel spacings in the most
frequently observed range from 2.5 to 3.0 where the theory
predicts that 30 to 40 percent of the heat leaving the s arfery is
recaptured by the s vein. The influence of the unequal vessel
size case is also shown in Fig, 8, for the case where the returning
s vein is twice the size of the artery. The effect of unequal
vessel size is small and produces less than a 4 percent variation
in the correction coefficient AT since the thermal resistance
within each vessel is a small fraction of the total thermal resis-
tance between the two vessels. The region bounded by the
curves a¥/a¥ = 1 and 2 and I = 2.5 to 3 is representative of
most of the tissues in Table 1. ’

T Discussion

In this study, a new analysis for the perfusion source term
in the tissue energy equation has been developed to describe

s 0r Pe=5
s 1 - Pes=25 e e s
& e
z o T
5 -~
£ yd
/
<4 20
'5 / e IIIlITIIIIIITIIIIIIIIZIZIIIIIIIEINIZEZ
s ;s
A f o
5 e
g 10 F
g f Ri=20, equal vessel size  1=Bs,=2g,=3
£ 1
=
0 1 n 1 1 I 1 " .l L 1 3
0 50 100 i50 200 250 300

Half Width Of Tissue Cylinder L
Fig. 8§ The effect of L on the axial thermal equilibration length of the

artery. Values with and without capillary bleed off are shown by the tight
lines and heavy lines, respectively.
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Fig. 6 The temperature profiles in the vicinity of the countercurrent
vessel pair

the effect of blood perfusion on local tissue heat transfer based
on a detailed anatomical analysis of the microvascular bed in
a muscle tissue cylinder identified by Myrhage and Eriksson as
the basic structural unit that is common to most skeletal muscle
tissue, The results of this study show that the effect of the blood
perfusion over a wide range of conditions can be accurately
evaluated by analyzing the countercurrent heat exchange be-
tween the s vessels in this muscle tissue cylinder. The derivation
in this paper differs from other theoretical models [3-5, 7, 10,
33] in that it provides the first rational model based on the
actual anatomical structure of muscle for determining the local
venous returnt temperature. A closed-forin solution is obtained
for the temperature field in both the tissue and vessel regions
using a rigorous asymptotic analysis of the vascular and tissue
eylinder geometry. In contrast to most previous theoretical mod-
els for countercurrent heat exchange, the model allows the ves-
sel wall temperature to be nonuniform, accounts for capillary
bleed off, and makes nto a priori assumption as to the blood
flow Nusselt number.,

The newly derived perfusion source term reflects the thermal
importance of both the capillary bleed off and countercurrent
heat exchange mechanisms. Countercurrent convective heat ex-
change becomes more important relative to the capillary bleed
off when the countercurrent vessels are closely spaced and R,
# I, This results in a higher value of the venous retumn tempera-
ture or lower value of the correction coefficient AT'. In contrast,
most of the heat leaving the artery is lost to the tissue for large
s, f and smail R, and the original Pennes source term is & good
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Fig. 7 Correction coefflcient AT as a function of tissue cylinder radius
R, for various vessel center-to-center spacings /. f = 2s, = 2s,.
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approximation for !/R, > 0.75. However, this value of I/R, is
not realistic for the most tissues, where I/ R, is close to 0.1, and
there is typically a 30 to 55 percent countercurrent rewarming
of the vein. Our previous theoretical and experimental study of
axial thermal equilibration in exteriorized rat cremaster muscle
preparations [38] showed a significantly greater countercurrent
rewarming { >80 percent) of the countercurrent vein. The im-
portant difference is that in the two-dimensional tissue prepara-
tions, the heat resistance between the countercurrent vessel pair
and the tissuc included not only the conductive resistance of
the tissue but also the convective resistance of the air at the
preparation surface. The latter is much [arger than the former
so that the air surrounding the preparation acts like an insulator,
which prevents the heat leaving the feeding arfery from being
lost to the external environiment. A higher venous return temper-
ature is, therefore, expected in an exteriorized tissue preparation.
The blood perfusion can act as either a heat sink or source
depending on the temperature difference between the local arte-
rial supply temperature and the local average tissue temperature.
Under normal conditions, the arterial temperature is higher than
the surrounding tissue temperature so that the blood perfusion
acts like a heat source, while under hyperthermic conditions,
the perfusion might act as a heat sink within the heated tissue
region.

One surprising result is that, in contrast to the results of
Brinck and Werner {8], the correction coefficient AT depends
only on the local vascular and tissue cylinder geometry and is
independent of the local perfusion rate when there is equal flow
in the s vessel pair, Therefore, it is the s vessel cylinder geome-
try rather than the blood flow rate that determines the strength
of the perfusion source term. The blood flow rale influences
only the axial thermal equilibration length, while the vascular
geomelry in the cross-sectional plane determines the thermal
resistance between the vessel pair and the tissue. This behavior
is the conseguence of three assumptions used in the model: {7}
The countercurrent heat exchange is the only driving force for
the heat transfer, (/i) the flow vanishes at the midpoint of the
tissue cylinder and the artery and the vein temperatures are
equal to the local tissue temperature at this point, and (ifi) the
same mass flow is assumed in each vessel of the s vessel pair.
This behavior is similar to that obtained by Baish et al. [4],
where in the Iimit of long equilibration lengths, the governing
equations for the countercurrent model resemble the Pennes
equation and the strength of the heat sink is determined by the
geometry of the model, not the flow rate. As shown in Zhu et
al, [38], in the limit of long equilibration lengths, axial conduc-
tion can be neglected and the countercurrent flow becomes the
dominant driving force for thermal equilibration. Only when
both the flow rate is low and there is a arge temperature gradient
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along the axial direction does axial conduction become compa-
rable (o or larger than countercurrent heat exchange. In this
analysis we have assumed that the muscle tissue cylinder is
parallel to the skin surface and the tissue temperature gradients
in this direction are negligible.

In Chato [11] and Baish's [2] analyses, the cffectiveness
of the counfercurrent -heat exchange is based on an isolated
countercurrent vessel pair in an infinite medium not a finite
tissue cylinder. The thermal *‘effectiveness’” defined in Chato’s
paper (e = {(E + Ng)/(1 + N,)) can vary from O to 1 and is

strongly affected by the values of both N, (reference number -

of heat transfer unit, UA/myco) and £ (mass transfer fraction
between vessels). A lower overall heat transfer coefficient
(UA), which may be caused by smaller vessel spacing, can
result in a warmer venous return blood flow, This conclusion
is consistent with our results. However, a larger blood flow or
smaller capillary bleed off rate can result in less heat transfer
between vessels and thus a lower venous return temperature in
Chato’s model, while our correction coefficient is independent
of blood flow and capillary bleed off rate. This is due to the
flow geometry and boundary conditions of our muscle tissue
cylinder. If one requires that the blood flow vanish at z = £,
into Chato’s model, i.e., £ = 1, one finds that the effectiveness
is equal to 1 and independent of blood flow as in our model,
This similar behavior is expected since axial conduction is ne-
glected in both models. Brinck and Werner [8] used parameter
fitting to determine the ‘value of the “effectiveness’® of the
perfusion term as a function of blood flow, The artery tempera-
ture variation was not considered and no closed-form analytic
expression was given in their analysis. The efficiency function
derived by Brinck and Werner [8] is based on averaging the
heat and mass transport equations over the whole timb. The
perfusion-dependent efficiency functions obtained in their
model as a result of curve fitting describe the combined effects
of both perfusion and artery temperature variations in the limb,
which are strongly influenced by vessel size, presence or ab-
sence of local heating, and the blood perfusion rate,

In this paper, the comection coefficient is derived for normal
resting conditions, The total thermal nteraction between coun-
tercurrent vessels and the local tissue can be affected by any heat
source introduced into the tissue region, such as hyperthermia,
metabolisim, etc. These heat sources will change the results
significantly only if the axial thermal gradients produced are
significant on the Iength scale of the half length of the s vessel
tissue eylinder, ~6 mm. In the new model only the last five to
six generations of branching in the Weinbaum-Jiji anatomical
description have been replaced by the much more efficient de-
scription of the s vessel tissue cylinder. The important remaining
unknown in our modified Pennes equation, Eq. (25), is the
local arterial inlet temperature T.,,. This temperature is deter-
mined by the thermal interaction in the SAV supply vessels
after they branch off from the central supply vessels that run
along the axis of the limb. In fact both the P vessels and the
SAYV vessels can be considered as part of the thermally signifi-
cant feeding vessel system that lies upstream of the s vessel
tissue cylinders. The temperature of the tissue surrounding the
SAV vessel pair will in general vary as one proceeds toward
the peripheral tissue layer. This basic problem will be addressed
in part II of the present study {40]. In principle, in treating an
entire limb one would like to derive general results for these
larger vessels and not have to treal them individually, Crezee
et al. [15] have suggested a different approach. Vessels =300
pn in diameter are (reated discretely and vessels <300 pm in
diameter are modeled as a ¢ontinuum thermal source.
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APPENDiX

in this appendix We derive the expressions for the radial and
axial velocity components in an ariery with porous walls. The
governing equations for the axisymmetric flow are
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where Uy is the kinenyatic viscosity of {he blood. The nondimen-
sionalization of these equations is performed by first introducing
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charactcrisﬁc quantities that scale the dimensional variables and
make them © :
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1f the dimensionless yariables just defined are introduced into
the govcrning equations, Egs. (AD) and (A3 pecome
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The Rey nold numbers Re, = ai * [y, fora typical 50 pm artery
yaries betweeh 0.5 {resting sate) to 5 (heavy exercise) and the
paramete? faf 18 approximately equal 10 200. Examination
of these equations reveals that the terms with the coefficient
affRealL* or aX{L*Req are of Tower order in these equations.
Therefore, if these terms are neglected, one can rewrite the
original dimensional Eqgs. (A2) and (AD) as
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At the Beéa cons’tdeted herein Eqs. {A5)
downstream of a short entrance region that is at most WO vessel
diameters, see 1161, where 4 quas'r fi i
profile is achieved. For & vessel
most 3 percent of the half tength of § vessel tissue cylinder.

Equaﬁon (AT requires constant pressure in the Ccross-sec-
(ional plane SO that the term, gp*ldz*, can pe written as
dp*ide*. The assumption of a constant pleed off from the s
yessels suggests an expression of the form

wp = (1= LD

where f riyisa function of ry. Substituting this form back
into Eq. (A.6), one finds that the pressure gradient must be
proport‘ronal to(l— 25 L*). ntegrating Eg. (A.6) twice, satis-
fying the no-slip condition ot ut at rd

p¥ o= ay and infroducing
the average veloeity at 2 = 0, ui, one obtains the sotution for
i, which is given by

ui = k(L — L~ r:’,-‘zlaffz)
The velocity in the radial direction v is determined by the

requirement of flow continuity. Substituting the expression for
¥ into Eq. (A1) and integrating this equation, one obtains
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These results are Eqgs. 2(a) and 2(8) i the main text.
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