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Microvascular Thermal Equilibration in Rat Cremaster Muscle
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Abstract—A new experimental approach was developed to ob-
tain the first direct measurements of the axial countercurrent
thermal equilibration in a microvascular tisshe preparation using
high resolution infrared thermography. Detailed stirface temper-
ature measurements were obtained for an exteriorized rat cre-
master muscle in which pharmacological vasoactive agents were
used to change the local blood flow Peclet number from 1 to 14
in the feeding artery. Under normal conditions, only the 1A
arteries (>>70 pm diameter) showed thermal nonequilibration
with the surrounding tissue. The theoretical model developed by
Zhu and Weinbaum (28) for a two-dimensional tissue prepara-
tion with arbitrarily embedded countercurrent vessels was mod-
ified to include axial conduction and the presence of the sup-
porting glass slide. This madified model was used to interpret the
experimental results and to relate the surface temperature profiles
to the bulk temperature profiles in the countercurrent artery and
vein and the local average tissue temperature in the cross-
sectional plane. Surface temperature profiles transverse to the
vessel axis are shown to depend significantly on the tissue inlet
temperature. The eigenfunction for the axial thermal equilibra-
tion depends primarily on the blood flow Peclet number and the
environmental convective coefficient. The theoretical results
predict that when p,,*Pe is less than 1 mm (the range in our
experiments), axial conduction is the dominant mode of axial
thermal equilibration. For 1 < p_*Pe < 3 mm, countercurrent
blood flow becomes comparable to axial conduction, whereas,
when p,,*Pe > 3 mm, countercurrent blood flow is the domi-
nant mode of axial thermal equilibration. Therefore, for
p.*Pe > 3 mm the axial equilibration length is proportional to
the blood flow Peclet-number, as predicted previously by Zhu
and Weinbaum in a study in which axial conduction was ne-
glected, It also is shown that the axial decay of the tissue tem-
perature at low perfusion rates can be described by a simple
one-dimensional Weinbaum-Jiji equation with a newly derived
conduction shape factor

Keywords—Thermal equilibration length, Microvascular heat
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INTRODUCTION

It is widely known that biood flow distribution and
detailed microvascular geometry have a profound effect
on the heat exchange between the blood and tissue and the
heat exchange of the tissue near the surface of the body
with the environment. Most investigations of countercur-
rent heat exchange in humans and mammals before 1980
examined the heat transfer between the large countercur-
rent arteries and veins in the limbs (7,16,17,19). No
equivalent experiments have been performed successfully
in microvascular tissue preparations. These experiments
require high spatial resolution temperature measurements
on a length scale of the diameter of the microvessels. This
study, to the best of our knowledge, presents the first
measurements of countercurrent axial thermal equilibra-
tion in the microcirculation.

The first quantitative relationship to describe heat trans-
fer in living tissue was proposed by Pennes (17). Pennes’s
equation assumed a uniform perfusion source term that
was thought to describe blood-tissue heat transfer occur-
ring in the capillary beds. This fundamental assumption
has been questioned by several investigators since 1980,
when Chen and Holmes (10) first showed, by using simple
theoretical models, that blood-tissue thermal equilibration
occurred in 50- to 500-pm-diameter vessels and not in the
capillary beds. Later, models derived by Weinbaum er al.
(23) showed that the primary mechanism by which the
microvascular blood flow altered the tissue heat transfer
was incomplete countercurrent exchange in these ther-
mally significant microvessels. A new bioheat transfer
equation, which combined the convective effect of coun-
tercurrent pairs and capillary bleed-off from these vessels
with the traditional conduction term and showed that these
effects could be represented as an enhancement in thermal
conductivity, &z, was derived by Weinbaum and Jiji (21).

Motivated by these theoretical studies, several in vivo
and in vitro experiments have been performed to ¢lucidate
how and where microvascular heat transfer cccurs. In ex-

-periments performed by Weinbaum et al. (23), thermo-

couple traverses across a rabbit thigh were performed in
vivo to show the importance of countercurrent heat ex-
change. The arterial temperature was found to be nearly
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FIGURE 1. Photomontage of the rat cremaster preparation provided by Dr. H. H.

Liposwky. 1

FIGURE 2, Schematic of the cross-sectional plane with and without the glass

plate. —
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equal to the venous temperature for any countercurrent
pair encountered along the traverse. Subsequently, Lem-
ons et al. (15) obtained detailed temperaturé profiles,
which strongly supported the premise in the Weinbaum-
Jiji equation that thermal equilibration occurred in the
larger countercurrent microvessels. High resolution tem-
perature measurements in the vicinity of numerous vessels
of 50-500 pm diameter, were reported for a rabbit thigh.
The results showed that the microvascular artery-vein tem-
perature differences in these primary heat exchange ves-
sels were only of the order of 0.1-0.2°C for vessels 100
pm in diameter or larger, whereas for vessels smaller than
100 pwm in diameter, there were no measurable tempera-
ture disturbances. Crezee and Lagendiik (1 1).inserted a
small plastic tube into the tissue of a bovine kidney and
measured the disturbance temperature fields in a plane
perpendicular to the tube while heated water was circu-
lated through it, and the kidney cortex was perfused at
different rates. These investigators also used thermocou-
ples to map the temperature distribution in the tissue of
isolated perfused bovine tongues at various perfusion rates
(12). The temperature measurements in these experiments
were found to agree better with a perfusion enhanced k¢
as opposed to the perfusion source term in the Pennes
equation. Roemer et al. (18) measured steady-state tem-
perature profiles in canine thighs heated by scanned fo-
cused ultrasound. A comparison was made with both
Pennes and Weinbaum-Jiji models, and a better qualitative
agreement was found with the former, Several investiga-
tors (1,26) have attempted to relate the measured tissue
temperature profiles or the effective conductivity of a per-
fused kidney cortex to the local microvascular geometry
and flow and the predictions of the Pennes and the Wein-
baum-Jiji bioheat equations. Anatomical studies, how-
cver, have shown that this is a poor model for muscle
tissue because the interlobular arteries and veins do not
occur as closely spaced artery-vein pairs. It is difficult to
reconcile these different results because there was neither
an experimental method for measuring the axial thermal
equilibration in different-size microvessels in an in vivo
tissue pteparation nor an adeguate theoretical model for
relating this equilibration to the local blood perfusion.
Microvascular blood flow commonty is examined in a
variety of two-dimensional tfissue preparations. Rabbit
ear, frog mesentery, rat cremaster muscle, and hamster
check pouch are a few of the more widely used prepara-
tions. These preparations have been used extensively in
the past in experiments to measure key parameters in mi-
crovascular beds (e.g., hematocrit distribution), in mass

transfer studies using fluorescent tracers, in studigs of va- -

soactive drugs, and in other applications. In this study, we
used the rat cremaster muscle to study for the first {ime the
axial thermal equilibration between blood and tissue in
vivo. In a companion study (27), this tissue preparation

was used to study the temperature response of a micro-
vascular bed to hyperthermia. As shown in Fig. 1, the rat
cremaster muscle preparation has the important advan-
tages of being nearly transparent and having uniform
thickness. These features allow the accurate measure-
ments of vessel number density, diameter, and blood flow
in several successive generations of vessels, All tA and
2A vessels and most 3A vessels in the preparation are
present as countercurrent artery-vein pairs. Depending on
rat age and size, the feeding arteriole (1A) varies from 50
to 200 pm in diameter. Previous theoretical studies sug-
gested that vessels of this size are the most important in
blood-tissue energy exchange.

High resolution infrared thermography is a noninvasive
technique that can be used to measure the detailed in vivo
surface temperature field above individual microvessels in
a two-dimensional tissue preparation, such as that shown
in Fig. 1. Therefore, a theoretical model is required to
relate the surface temperatures that are measured in the
experiment to the temperature of the blood in the vessels
and the axial thermal equilibration that occurs between the
tissue and the artery-vein pair beneath the surface. It is
widely known that the equilibration length for a particular
vessel pair varies with the blood flow Peclet number and,
therefore, this length varies as the diameter and the flow
velocity change during physiological regulation. Changes
in catiber and flow rate of the feeding arterioles can be
produced by pharmacologically vasoactive agents. It is,
therefore, possible to experimentally examine the relation-
ship between the thermal equilibration length and the
blood flow Peclet number in the feeding 1A artery by

introducing increasing concentrations of vasoactive drugs, |

The boundary conditions for countercurrent vessels in a
thin tissue preparation depart significantly from those of
many previous studies that have considered either vessels
embedded in an infinite or semi-infinite medium (6,13,20)
or countercurrent heat transfer in a tissue cylinder of finite
radius (4,24,25,29,30). The solutions for these flow con-
figurations cannot be applied to the present flow geome-
try, and Zhu and Weinbaum (28) previously presented a
simplified model for the two-dimensional tissue prepara-
tion, which is shown in Fig. 2a. The artery-vein pair is
represented by two line sources that are positioned arbi-
trarily in the cross-sectional plane of the preparation. An
analytic solution for a Green’s function was then derived,
which satisfied all the tissue boundary conditions for this
flow geometry in the cross-sectional plane of the vessels,
This solution was shown to be exact when the ratio of

blood to tissue conductivity was K’ = 1 and highly ac--

curate when K # L. This initial model was used to design
and test the feasibility of this study.

The initial model described above did not take into
account the axjal heat conduction in the tissue region or
the effect of the glass plate on which the rat cremaster
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muscle preparation was placed during the. experiments.
The experiments showed, however, that, at low blood
flow rates, axial heat conduction is comparable to axial
heat transfer as a result of the countercurrent flow in the
blood vessels. A more realistic model, schematically
shown in Fig. 2b, was, therefore, developed in this study
to allow a more detailed comparison with experiments.
This modified three-dimensional model considers both ax-
ial conduction and the effect of the suppdrting glass plate.
The addition of axial conduction changes the nature of the
boundary value problem and enables one to examine im-
portant new features, such as different artery and tissue
entrance temperature, which could not be addressed when
the model of Zhu and Weinbaum (28) was used.

METHODS
Experimemtal Methods

Fourteen male Sprague-Dawley rats (weight = mean
+ 8D, 153 £ 27 g) were used in this study. The animals
were anesthetized with an intraperitoneal injection of sc-
dium pentobarbital solution (40 mg/kg). Supplemental
doses were administered as needed. A tracheal tube was
inserted to maintain a patent airway. After anesthesia ad-
ministration, the rat was placed on a water-jacketed pad to
maintain a constant rectal temperature, which was moni-
tored throughout the experiment with a thermocouple in-
serted into the rectum. The surgical procedure required
approximately 30 min, and the subsequent experimental
procedure required approximately 1 hr.

The left cremaster muscle was dissected from the scro-
tal skin and testicle for in vivo microvascular observation
as described previously (2,14). This exteriorized cremas-
ter muscle was extended into a flattened sheet and held
with silk sutures over an optical window in a tissue bath at
room temperature, The schematic diagram for the exper-
imental setup is shown in Fig. 3. The tissue bathing so-
lution was drawn from stock reservoir (reservoir 1) con-
taining a modified Krebs-Ringer solution that consisted of
6.6 g/l NaCl, 0.35 g/l KCI, 0.28 g/l MgSO,, 0.28 g/l
CaCl, » 2H,0, 0.16 g/l KH,PO,, 2.09 g/l dextrose, and
2.14 gfl NaHCO; dissolved in filtrated water. The cre-
master muscle is sensitive to PO,, PCO,, and pH, all of
which were monitored by an Anafaze 8LS controller
(Anafaze Measurement and Control, Watsonville, CA)
that adjusted the bubbling rate of CO, and N, in the re-
circulating reservoir (reservoir 2) to maintain a PO, of
15-30 torr, a PCO, of 35-45 torr, and a pH of 7.4.

The preparation was transilluminated on the micro-
scope stage (Zeiss, Thomwood, NY; ACM) and viewed
through a 10X Nikon water immersion objective. During
the experiment, the field of view was displayed on a
closed circuit camera and videotaped for later analysis.

- The average blood flow velocity, , in the feeding arteri-

ole was equal to the centerline blood velocity, V, divided
by 1.6 (5}, The blood flow Peclet number, Pe, is given by

Pe = 2y Cplhulk,

where 'y}is blood density, G is specific heat of blood, ke
is blood thermal conductivity, u is average blood flow
velocity of the microvessel, and p% is vessel radius (in
pm). Centerline red blood cell velocity was measured
with an optical Doppler velocimeter (Microcirculation Re-
search), and vessel radius was measured from the video-
tape with an electronic video caliper (Microcirculation Re-
search). The preparation could be positioned either under
the light microscope optics or rotated into place under a
Hughes Probeye infrared camera (Hughes, Carlsbad, CA)
to obtain a high resclution thermal image of the muscle.
The infrared camera was positioned 10 cm to the left of the
optical axis so that movement between the two measure-
ment systemns could occur rapidly, and a registration mark
ensured reproducibly accurate placement of the muscle
under the optical axis. The infrared camera had an auxil-
fary 5-mm lens that yielded an optical resolution of 125
pm and temperature resolution of 0,1°C. One calibrated
copper-constantan thermocouple was used to measure the
environmental temperature, and two other thermocouples
were held in position beneath the muscle at separate loca-
tions to provide an absolute temperature reference for the
infrared camera. The experiment was controlled by, and
the data were acquired and recorded with LabView soft-
ware (National Instruments, Austin, TX) running on 2
Macintosh computer,

Measurement Protocol

A 30-min stabilization period followed surgery to allow
the preparation to achicve an initial steady-state blood
flow. Then four trials were conducted in each experiment,
one for each of four different microvascular blood flow
rates. To induce changes in the blood flow Peclet numbers
in a feeding arteriole, a vasoconstrictor, NE (10~ M), or
a vasodilatof, ‘sodium nitroprusside (107 M, 107° M,
and 107> M); ¥as added for each trial. After addition, a
10-min period was given for the preparation to reach equi-
librium. After all parameters (temperature, velocity, and
diameter) stabilized, the images of the feeding arteriole-
venule pair and the centerline red bload cell velocity were
recorded continuously for a 2-min measurement period.
Then, within 30 sec, the preparation was rotated under the
infrared camera, and the solution inside the tissue bath
was drained. The thermal image of the preparation and the
temperatures measured by thermocouples were recorded.
A thin plastic wrap was placed on the muscle surface to
prevent evaporation. Immediately after the thermal image
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was completed, the rat was repositioned under the/optical

- microscope, and the velocity and diameter were measured

again to verify that they had remained unchanged while
the thermal image was being obtained. Next, a new con-
centration of drug was added to obtain stepwise changes in
blood flow and to reach a new equilibrium, and the above-
described procedure was repeated until the sodium nitro-
prusside (107> M) trial was finished. Changes in vessel
diameter, vessel center to center spacing, and flow veloc-
ity, therefore, could be recorded for each flow condition
and used as input in the theoretical madel.

Experimental Results

Figure 4 shows a sequence of high resolution infrared
images of a single rat cremaster muscle at four different
blood flow rates. Figure 5 shows the axial surface tem-
perature profiles above the central arteriole of the cremas-
ter muscle at four different blood flow rates. Increasing
the blood flow rate produced a higher inlet temperature at
the proximal boundary (on the left) at z* = 0 mm and an
elevation of the temperature of the entire preparation, The
maximum point.in the temperature profiles normal to the
vessel axial direction was found to be a good indication of
the location of the feeding arteriole. As observed in Fig. 4
the thermal disturbance caused by the blood vessels be-
came more evident as the blood flow rate increased.

The horizontal surface temperature profiles normal to
the axial direction of the 1A feeding artery-vein pair are
shown in Fig. 11. These profiles revealed the somewhat
surprising fact that this temperature field was almost uni-
form in the lateral direction. The comparison between ex-
perimental data and theoretical predictions presented be-
low explains this unexpected observation and interprets
the results shown in Figs. 4, 5, 10, and L1.
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FIGURE 5, Temperature profiles aleng the central arterlole
and venule of the cremaster at four different blood flow rates.

© . 2* =0 mm is the proximal end of the artery as it enters the
" tissue hath, and z* = 17 mm is the distal end of the recording

area.

MATHEMATICAL MODEL
Formulation

In this section, the essential features of the three-

* dimensional mathematical model used to describe the

boundary value problem shown in Fig. 2b are summarized
and the differences between this model and that of Zhu
and Weinbaum (28) are highlighted. Two vessels embed-
ded in a thin tissue layer of thickness H* = H} + H3*
were examined. The tissue is supported by a thin glass
plate of thickness H,

The principal simplifying assumptions of the model are
as foltows: both the flow and temperature fields are
steady, and the velocity profiles in the blood vessels arc
parabolic; the glass plate in the cross-sectional plane can
be converted into an equivalent tissue layer of thickness
H, k/k, so that the boundary value problem can be sim-
plified into an equivalent tissue layer of thickness
H* = HY + Hf = Hf + (Hy* + Hfk/Jk,); and to ac-
curately describe the axial conduction for the new cross-
sectional plane, the conductivity in the axial direction can
be converted into an equivalent value k,,, if one assumes
equal axial temperature gradients in the glass and the tis-
sue regions. k,, is defined in the following expression:

k
km(H”f + Hy + HY f) = k(HY + H3) + k%,
3
kn  HY + HY + Hikk

UL T H + HY + Hikjk

To simplify the complexity caused by axial conduction,
the axial conduction term in the tissue energy equation,
a°0,/az°, is approximated by its average value, d*0, .. /d2*,
defined below in Eq. 10, whereas the axial conduction in
the blood vessels is neglected, because the cross-sectional
area of the blood vessels is small compared to that of the
tissue. The temperature gradient 88, /82 in the convective
term of the vessel energy equations can be approximated
by the axial gradient of the vessel bulk temperatures,
d0,,, /dz, asjgg;iﬁéd-previously (29). The cross-sectional
plane is uniform-in’the axial direction, and perfusion
bleed-off from the supply artery-vein pair is neglected.
This simplification is discussed in detail below. The basic
geometry, symbols, and coordinate system are shown in
Fig. 2b.

Nondimensional parameters are introduced as follows:

. SR - SN D
Pa = s P = g Por ™ e ¥ 7 e I T ox
_ T _Ht, _D*
P Sk e = e P T g
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where the subscripts ¢ and v refer to artery and vein,
asterisks denote dimensional variables, and p¥ and p¥ are
the dimensional radii of the artery and vein. Note that z is
scaled by p*(k /k)’° rather than by Pep¥, as it was
scaled in the model of Zhu and Weinbaum (28). This
change allows one to eliminate the conductivity ratie in
the governing equation for the tissue. Introducing the
above assumptions, one obtains the following simplified
dimensionless governing equations and boundary condi-
tions for the vessels and the tissue :

ii @‘1.{_}_.@2&_}:1_2% = |
Pa PgadﬁH e( pa) da » P =

Pa apa e
(n
baf a8 1 a8,
by o \P 3, T P2 34)2
pea( 1 - 3 2, @
e PE, dz ’ Py = Py
8%, d% d*Bave
Wt = " g P> > e ©)
-Dsx=D, —HysysH
ﬁq - Bh
K a_ea _ 9_91 , P = 1 (4)
dpa  9pa
ev = Bh
0y, o=, ®
apv apv
— =% Biigh, y=*Hpy ©)

dy

For a preparation in which the width 2D is much larger
than the tissue thickness H, it is reasonable to assume that
there is no heat flow across the boundaries at x = * D.
Therefore, the adiabatic condition is required :

x==xD (7

In Eqgs. 1 and 2, 6,,, 8,4, and 6, ,, are the artery butk
temperature, vein bulk temperature, and average tissue
temperature, respectively. These temperatures are defined
as

2 0 f1y g, 2
0 = 2 [ 101 = pDoudpucid, ®)
= p" —_——
0, ,"p" f j (1 )P\dptdd)‘ 9)
Orpe =

1
2DH, + Hy) — w — wpl,

f f 8,(x,y,2)dx dy

tissue region

(10)

The fundamental differences between the above formula-
tion and that in the model of Zhu and Weinbaum (28) are
that axial conduction is treated in the tissue (right side of
Eq. 3) and the effective thickness of the tissue in the lower
region has been increased to include the glass plate.

Solution for Countercurrent Flow

A theoretical solution to the complicated boundary
value problem summarized above can be obtained by
modifying the solution procedure outlined by Zhu and
Weinbaum (28). The simplifications introduced in the
governing Eqs. 1, 2, and 3 and the boundary conditions
enable one to separate variables and solve the boundary
value problem in the cross-sectional plane independent of
the boundary value problem in the z direction. First a
Green’s function or fundamental solution must be devel-
oped for a line source arbitrarily positioned within the
tissue-vessel region. Then, the solution for two counter-
current vessels undergoing countercurrent heat exchange
must be constructed by superposing the fundamental so-
lutions. Finally, the boundary value problem for the axial
interaction is solved to determine the vessel bulk temper-
atures and the average tissue temperature.

The fundamental solution or Green’s function
W(x,y:£,7m) satisfies Laplace’s equation in the rectangular
region, ~D < x <D and —H, <y < H|, except for
the source point (§,m) arbitrarily located inside the regios.
This solution also satisfies the boundary conditions in Eqgs.
6 and 7. The derivation for this Green's function is pre-
sented in Appendlx I of the study by Zhu and Weinbaum
{28), The solutiont for W is

o
W= (Cy + Cp) +2, 3 cos VA
r=1

(€ — DYcos[\/Molx —~ D)JfA;e VA
+ B}e—\/rwy] ¥ =1

Sl
=Dy + Dy + E ) cos[W
E n=]




(& — D)eos[\/A(x — D)J{AzeV*®

where A;, B, C;, and D, (i = 1,2) are constants that

are listed in (A.8) and (A.10) of Appendix 1 of the
tudy by Zhu and Weinbaum (27), and the elgenvaiue
N, = (nmi2D).

_ The solution for the countercurrent an'ery vein pair is
----- . decomposed into a particular solution and a general solu-
<= ltion. These expressions ar¢

] 3 Pedby aw ~

== 1% DT D TQ + ) agpleos(ida)
j=t

+ byPasinid) (12

1 p4. 3 Peti dB,,
b={p-=5->p Dy G0

% (p" 4p2 4 p") ARy

+2 a‘jpi.COS(]‘d)p) + bvjpf-SinU'i’v) (13)

~ Similarly, the tissue temperature also can be decom-
posed into a particular solution and a general solution; 6,
.+ Oy » V), is given by

d29 v {z)
Oy = L'iz{“ (2 +hy+ L (14)

where, the coefficients /, and [, are only functions of H, ,
and Bi, , and are given in the Appendix. This particular
solution is not needed in the model used by Zhu and Wein-
baum (28), because the right side of Eq. 3 is homoge-
neous. 0,, satisfied aplace’s equation in the tissue region
and boundary conditions in Egs. 6 and 7. The general
solution for the tissue can be constructed by placing two
anisotropic line sources at the centers of the artery and
vein with strengths C,, and C,,, respectively. Therefore,
8y, is a linear combination of Green’s functions represent-
ing these sources. The tissue temperature is expressed by

CaWlrykan,) + CoWxy€,m) + 0,0.2)
' (15)

where (£,,m,) and (£,,7,} are the coordinates of the artery
and the vein, respectively, in Bq. 11 for W(x,y:{,n). Note
that the tissue termnperature also satisfied the govcrmng Bq.
3 and boundary conditions Eqs. 6 and 7.

As shown by Zhu and Weinbaum (28}, the coefficients
8y by Gy by Cyp and Cy, in Eqs. 12 and 13 were
determined by the matching conditions in Eqs. 4 and 5 for
the continuity of temperature and heat flux on the vessel
surfaces. Only the expressions for Cy,, Cy agp and a9
are needed for our final results

+ B VAI] y <y an’
3

depend on the Biot number and the tissue geometry, and -
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K"'JTPB deab dzerave
_ K'uPe @ Vave 16
Csa . 2 dz + de ( a)
K'TIPBP?.',E dﬁvb 2 dlelave '
— —Thwm vl 16b
Ca 2 dz + pyT dz'l ( )
s
Az = -1; J"-Tr [Csa"V(xsy:gd ;"]a) + CS"W(x’y :g"’nv)
+ Bpl]‘p‘,:ld(ba (17a)
U ofn
aw = :I'; f-n[Csa‘V(-T.}’:ga .T]a) + C,,.W(X,}’ngﬂv)
+ Gy, =, 4. (17b)

It can be shown, as in Reference 28, that the solution is
exact when K’ = 1, whereas, when X' # 1, the solution
is approximate, because it satisfies the heat flux continuity
on the vessel surface globally rather than locally.

8,5 8,4, and 8,,,, remain to be dgtermined. Substitut-
ing Egs. 12, 13, and 15 into the expressions for 8,
8,,, and 8., respectively, yielded

o _ _ LPediy  an "
®= 796 dr 3 (15)
8., = 11Pe de\b 9

vb — 96 upw dz 2 ( )

C,GW(x,y :gﬂ.'ﬂg) + C,;.W(x,)ﬁgw'flv)
Brave = II 2
2D(DH, + Hy) — 1 — mph

fissue region

dzefave —Pez()’z + Ly + D)
z° 2D(H| + Hy) i TPyr
(20)

Note that aqg,a,q, C,, and Cj, are linear combinations of
d8,,/dz, d8,,/dz, and d*0,,1d2.

Substituting the expressions for a,q, 6,9, Cype and C,
into Eqgs. 18, 19, and 20, yielded

a6, B &8,

8up = A1y ; d” *An gt A 7 @1
da,, db,y 40

.9 = Az da An _d_;ﬂ + Ap d;ve (22)
40,4 di.g, d,..

Oave = A3 da Axn d‘ + Az d;; < (23)

where A,,.3; are listed in the Appendix. If axial conduc-
tion is neglected, as it was by Zhu and Weinbaum (28),
one obtains a reduced set of equations involving only 0,
and 0,,.

The three coupled equations (Egs. 21, 22, and 23) for
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the vessel bulk temperatures and the average tissue tem-
peratare are linear, ordinary, differential equations that
can be solved easily once the appropriate boundary con-
ditions in the axial direction are specified. For counter-
current flow, this requires that only the artery bulk inlet
temperature be prescribed, because, as z — o, both the

venous bulk temperature and the artery bulk temperature -

approach T,.. For the tissue region, the average tissue
entrance temperature, 8,5, can differ fromrthe arterial inlet
temperature, 8,, = 1. These boundary conditions are
given by

8,=1 2z=0 (24a)
Be = 00 2 =0 (24b)
Bab'evb'emve =0 zo>= (240)

The general solution of Eqs. 21, 22, and 23 is an eigen-
function of the form of €%, in which the eigenvalues E;
can be negative, positive, or a complex variable and 8,,,
0,5 and 6, are arbitrary combinations of all possible
eigenfunctions, Because of the boundary condition (Eq.
24c), one can exclude eigenfunctions with the positive
eigenvalue B;. One finds that 6, 6,,, and 8,,,, must have

the functional forms

Bap = Ae B 4 Age BZ (25a)
B, = CpAE~5% + CppAE~52 (25b)
Biave == CpiAye 5% + szAzeffg’Z - (25¢)

where Cy; 15,21, ang 22 are coefficients calculated from
Egs. 21, 22, and 23. The unknown coefficients A, and A,
are determined by boundary conditions (Eqs. 24a and
24b).

Conduction Shape Factor Between the Artery and the Vein
in the Cross-Sectional Plane. The expression for the con-
duction shape factor significantly simplifies for the case of
equal size blood vessels symmetrically positioned relative
to the vertical axis. If one analyzes the expressions for the
coefficients in Eqs. 21, 22, and 23, after requiring that the
mass flow in each vessel be the same (p2, ¥ = —1), on¢
finds the following :

K'm..
Al = —An = Pe (—11/96 + 5 Wa_a)
~PeK'm —
Ap = —Agy = T Wi—a
Az = Ax

where the coefficients in the above relations are listed in
the Appendix. Subtracting Eq. 22 from Eq. 21, one ob-
taing

d(eab + Bvb)

b ™ O = (Al + Ap) e

(26)
In Reference 3, Baish et al. introduced two shape factors,
g, and oy, that describe conduction between the artery
and the ge_in, and between both vessels and the tissue,
respectively. o, was obtained by adding Eqs. 10 and 11 in
reference 3, which is given by

Y Cofici d(Tay + Tip)
2k(Tap — Typ) dz*

oy = (27)
Introducing the dimensionless parameters and comparing
Egs, 26 and 27, one obtains the following expression for
Oy

_ P _ 1
T T HAn + A KW, — IW,, + 11/(24m)

(28)

. Thermal Equilibrium Length in the Axial Direction. Once

the vessel bulk temperatures and the average tissue tem-
perature are known, one can oblain expressions for the
vessel temperatures at any location in the vessel region
from Eqs. 12 and i3. For the tissue temperature, one
$ubstitutes Eqgs. 25a, 25b, and 25¢ into Eq. 15 and obtains

04x,,2) = Fiix,ye £% + Fy(x,yde™52 (29

where F(x,y) and F,(x,y) are functions of the vessel-
tissue geometry and Pe and are listed in the Appendix.
The tissue axial thermal equilibration length is the dis-
tance over which the tissue temperature decreases by a
factor of e. Comparing Egs. 25a and 29, one finds that the
thermal equilibration length calculated from the surface
temperature is not the same as that of the feeding artery,
although they are related. Only when the initial average
tissue terperature 0, is equal to either Cy, or C,, can the
tissue temperature be reduced to an expression containing
only a single decaying mode. For these special conditions,
the tissue temperature and vessel temperature follow the:
same temperature decay pattern in the axial direction. For
the more general case, the tissue temperature has two de-
caying modes.'However the difference of thermal equil-
ibration lengths. bc}ween vessel and tissue will be small if
the tissue thickness H is much smaller than the tissue
width 2D and the temperature gradient across the tissue

~ thickness is small. Therefore, we conclude that the ther-

mal equilibration length calculated from the tissue surface
temperature is a good approximation of that of the feeding
blood vessels. The tissue temperature distribution in the
cross-sectional plane at any z is obtained from Eq. 29.

PARAMETERS

The thermal properties of the preparation and the sur-
roundings and the geometrical parameters describing the




- tissue preparation are summarized in Table 1+ The con-
“vective coefficient h ranges from 5 to 25 Wim*C and
corresponds to free convection conditions. The ranges for
most of the geometrical parameters were obtained from
‘these experiments on the rat cremaster muscle.

spacing, and Pe of the vessels change. An important ad-
~vantage of this two-dimensional preparation is that all of
these parameters can be measured carefully and used as
input in this theoretical model. Typically, the diameter of
a 1A vessel varied by a factor of approximately two when
'NE and sodium nitroprusside are used, and the Pe varied
by an order of magnitude, There was little change in the
spacing of the tissue between the vessels, because the
tissue is nearly incompressible, and, therefore, the change
in ! is primarily caused by the increase in diameter.

RESULTS

Axial Variation of Artery, Vein, and Average
Tissue Temperature

" In Figs. 6-9, the radii of the feeding arteriole and
_venule were 50 um, and the preparation thickness was 150
" wm. The ratio of equivalent axial thermal conductivity to
_ tissue conductivity, k,/k, was found to be 2.56. Therefore,
H, = 1.5 and H, = 3.214. For equal or unequal vessel
 pairs, the ratio of artery and vein velocity, %, was deter-
mined by requiring that the mass flow in each vessel be the
same. .

" We have examined the effects of several factors on
axial temperature variation and thermal equilibration
length, such as convective coefficient # of the surround-
ings, the inlet average tissue temperature 6, and the
blood flow Peclet number Pe. For Pe = 8, Fig, 6 shows
how the inlet average tissue temperature 8, influences the
axial temperature variation in the vessels and tissue. Note
from Eqs. 25a, 25b, and 25¢ that 8, affects the axial
distributions by altering the weighting of the two eigen-
functions in the solution. An elevation of the tissue inlet
temperature means that more of the heat leaving the feed-
ing arteriole can return to the venule and, thus, be pre-
vented from being lost to the surroundings. Therefore, the
larger 0,5, the longer the thermal equilibration length of
the feeding artery and the warmer the blood in the return-

TABLE 1. Key parameters.

Tharmal properties Geometric properties

past = 40-76 pm

Y¢ = 1000 kg/m?
P = 40-126 pm

C; = 4180 Jikg®C

k = k, = 0.6 Wim°C H* = 100-400 pm

Ky = 1.4 Wim°C H* = 200 pum

h-= 526 Wim™C Br=somm
. Pe = 1-16

When vasoactive agents are introduced, the diameter,
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FIGURE 6. The effect of inlet tissue temperature and conves-
tion coefficlent on the axial temperature distribution. Note
that Pe = 8, and the dimensionless axial distance z is scalad
by pAik. k)% The dimensionless artery bulk temperature at
the entrance always is equal to 1.

ing vein. Observe in Fig. 6 that the average tissue tem-
perature 0,,,, closely follows the vein bulk temperature 6,,,
and, except near the inlet, lies between the artery and vein
bulk temperatures, Figure 6 also shows that the axial vari-
ation of the dimensionless artery bulk temperature 6, is
altered significantly by changing the convective coeffi-
cient h. For Pe = 8and 8, = 1, the dimensionless ther-
mal equilibration fength L is reduced from 95 to 40 when
the convective coefficient h is increased from 5 to 25
Wim*C. The axial thermal equilibration length L* de-
creases from 7.6 to 3.2 mm for this increase in A.

The influences of the blood flow Peclet number and the
glass plate on the thermal equilibration of the artery are
illustrated in Fig. 7. A comparison of the thin solid line
and the long dashed line in Fig. 7 reveals that the thermal
equilibration length is increased by more than a factor of
two as a result of the presence of the supporting glass
slide. There are two principal sources for the axial tem-
perature decay; one is axial conduction, and the other is

A0r

—— pxial conduttion & g'ass, Be=1.0

-+ Axigl conduc tion & g'ass, Be=0.5
—— Azl conduction but no gloss, Be=1.0
——— ‘Glosg but no axiol conduclion

30F

20

Therma! Equilibration Length
For The Artary L™ {mm)
)

h=5W/m?C
1 A i i L L L

0 1 2 3 4 5] 6
puPe (mm)

FIGURE 7. The effects of axiai conduction and countercurrent
flow on the axial thermal equilibration length for different

pile.
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blood flow. Note that the thermal equilibration length is
- proportional to the blood flow Peclet number when axial

conduction can be neglected (28), as shown,by the heavy
solid line in Fig, 7. However, in our modified model,

which considers axial conduction, the thermal equilibra-.

tion length L increases slowly with blood flow Peclet num-
ber when p*Pe is less than [ mm. Figure 8 shows the
percentage contribution of countercurrent flow to the axial
thermal equilibration at two values of tissue inlet temper-
ature, 0 = [.0and 8,, = 0.5. L_,,, is the thermal equil-
ibration length when axial conduction is neglected (28),
and L g4 cone 1 the thermal equilibration length when
both countercurrent flow and axial conduction are consid-
ered. Figure 7 shows that axial conduction is the dominant
mode of axial thermal equilibration when p% Pe < 1 mm.
For 1 < p}Pe < 3 mm, the effect of countercurrent
blood flow becomes comparable to axial conduction,
whereas, when p%Pe > 3 mm, countercurrent heat ex-
change becomes dominant. This is evident in Fig. 8,
which shows that, for both values of §,,, the thermal equil-
ibration length caused by countercurrent flow accounted
for at least 90% of the total equilibration length when
pxPe > 3 mm. Figures 7 and § also show that, at high
blood perfusion rates, the inlet average tissue temperature
8, has less influence on the axial thermal equilibration,
and the axial thermal equilibration length is proportional
to the blood flow Peclet number, as was predicted previ-
ously by Zhu and Weinbaum (28).

Surface Temperature Profiles

The surface temperature is obtained from Eq. 29 by
setting y = H,.'Because the temnperature profile across the
tissue thickness is almost uniform for small 4, the trends

1.1 ¢
10}
o9}
a8t .
0.7
osf f
osf |
0.4}
0.3}

o2l i - Leere/ Leerareene B =1.0
0.t | R Leor/ Leorescane Bro =05

0.0 L— L ) 1 1 . L L
3 4 5 6

piPe {mm)

h=5W/m?°C

Rotio of Axial Equilibrotion Lengths

FIGURE 8. The percentage contributions of countercurrent
flow and axial conduction to the axial thermal equilibration
length at two values of tissue inlet temperature 0,, = 0.5 and
8o = 1.0. L,,,, Is the thermal equilibration length neglecting
axial conduction (heavy solid line in Fig. 7) and L ., 4, conv I$
the thermal equilibration length considaring axial conduction
{solid and short dashed lines in Fig. 7).

for the axial temperature decay at the surface are similar to

_ those for 0,,. Therefore, the effects discussed in Fig. 6

and 7 were nearly the same for the axial surface temper-
ature profiles as they were for the axial temperature profile
of the feeding artery.

Figure, is a plot of the surface temperature profiles for
different G, at two axial locations, one at the entrance,
z = 0, and one far downstream, z = 70, for two values
of h. Figure 9 shows that, at the two higher values of 0,4,
0,0 = 0.9 and 1.0, less heat is lost from the artery to the
environment and the surface thermal fluctuation because
the vessels are smaller near the entrance. At higher tissue
temperatures, there is a significant countercurrent rewarm-
ing of the vein. For 6,4 < 0.9, there is a single maximum
with no significant minimum for the vein. When the axial
distance z increases from 0 to 70, the shapes of the tem-
perature profiles are similar, and 8, only affects the level
of local average tissue temperature, It can been seen that
the location of the surface maximum lies right above the
artery. Therefore, the horizontal location of the artery can
be determined from the maximum in the surface profiles.
Figure 9 also shows the initial surface profile for # = 25
Wim™C for 84 = 0.75. Changing h affects the axial de-
cay but does not have a significant influence on the initial
surface temperature distribution.

Comparison of the Experimental Data and the
Theoretical Results

The unknown parameter required to compare the ex-
perimental data and the theoretical results is the convec-
tive coefficient . Although / cannot be measured directly
in our experiments, we can estimate its value by compar-
ing the equilibration length predicted by the theoretical
model with that measured from the axial decay of the
surface temperature field. For this comparison, we se-
lected 84 = 0,4 on the basis of the results shown in Fig.

z=0,h=5W/m?°C

4
1.0 F
09|
08
[SAr o
0.6 -
05
04 r
03
Q.2
a1

Dimensionless Surface Temperatures

o .
-~100 -80 ~60 ~-40 -20 © 20 40 60 80 100
Dimensionless Tissue Width x

FIGURE 9. Surface temperature profiles at different axial lo-
cations {z = 0, 70) for different inlet tissue temperatures and
convective coefficiants (Pe = 8).
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6. Figure 10 compates the theoretical predictions.for the

- axial surface temperature distribution for one experiment

in which results were obtained for four different yalues of

Pe by drug-induced vasodilation and vasoconstriction. For

this comparison, the diameters of the vessels and their

* gpacings were changed in the model to agree with the
expetimental measurements at each Pe. When h is se-
lected as 6 W/m*C, the temperature distributions pre-
dicted by the model correlate very closely withi the exper-
imental data for ail four blood flow Peclet numbers. Al-
though one might choose h to fit one axial profile, the
ability to predict all four profiles with the same / is strong
support for the validity of the model, because h does not
change during the course of one experiment. This value of
h is reasonable for free convection on a horizontal tissue
surface in air.

The theoretical and experimental surface temperature
profiles normal to the main cremaster vessels are shown in
Fig. 11 for one of the trials (Pe = 7.8) at four axial lo-
cations, The theoretical results predict a maximum tem-
perature above the feeding arteriole and an almost uniform
temperature distribution in the horizontal direction. The
theoretical predictions are consistent with the experimen-
tal measurements. However, the small but steep temper-
ature gradient between the countercurrent artery-vein pair
predicted by the theoretical model was not clearly visible

" . in these experiments. This small temperature difference

* may have been camouflaged by the limitation in the spatial
resolution of the experimental measurements or by the
simplifications in the model discussed below.

Although the diameters and inflow Pe in the 1A vessels
were measured carefully and used as input conditions in
the model, vessel branchings were neglected in the anal-
ysis. The first 2A branching typically was observed to
occur 5-7 mm from the entrance of the 1A vessel pair.
These 2A vessels have a diameter that is typically 60% of

3% ¢ Experimental data
R Theoreticol resulls
o 30F
g
I3 29 L Pe=7.80
z Pe=B6.16
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o
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~ FIGURE 10. Comparison of the theoreticat and experimental
results for axial surface temperature decay at different blood
flow Peclet numbers.
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FIGURE 11. Comparisons of the theoretical and experimental
results for the surface temperature profiles at four different
axial locations.

that of their parent [A vessels, and, as shown by Zhu et al.
(27), they have a flow that roughly satisfies the condition
that Q/(2p%)° is a constant. The flow Q in the 2A vessel,
therefore, is approximatety 20% of that of its-parent ves-
sel, and its Pe is approximately 33% of that of its parent
vessel. Therefore, the flow in the 2A vessel is conduction
dominant, and the idealization in the model that flow in
the 1A vessel is constant, although not true, is not an
unrealistic simplification.

Comparison of the Theoretical Model and the
Weinbaum-Jiji Equation

The sophisticated model developed in this study pro-
vides an accurate basis for examining the validity of sim-
pler one-dimensional models in which an effective con-
ductivity kg is used to describe the enhancement in con-
ductivity caused by blood flow. In particular, one can
compare the results of this model with those obtained from
the Weinbaum-Jiji equation. By applying the Weinbaum-
Jiji equation (21) to the tissue preparation (without glass
plate} and introducing the dimensionless parameters
shown above, one can obtain a simple one-dimensional
energy equation for 8,,,.(z) as follows:

dazave(z) kf th
e Sl et g (2),

dr kT OH,

£
rmzPezp,,%
4 A

key
k =1+

(30)

where o, is the condition shape factor for heat transfer
between two vessels at different temperatures in the cross-
sectional plane, and » is the countercurrent vessel pair
number density per unit of cross-sectional area, which is
equal to 1/(2DHp3?). The solution of Eq. 30 for the tissue
emperature is

Bpave = B:OE_ZEL

where the thermal equilibrium length L*is

t

o
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blood vessels that lie between 160 and 240 pum in diameter
for ‘normal flow conditions (27}, Countercurrent heat
transfer between the blood and the tissue dominates heat
transfer in blood vessels when p¥Pe > 3 mm, and, for
these conditions, heat conduction can be neglected.

In our previous study (27), we predicted the enhance-
ment in the effective conductivity k. q/k, by measuring the
changes in flow and diameter in !A to 4A blood vessels
due to hyperthermia and drug-induced vasedilation and
applying the Weinbaum-Jiji expression for k. (Eq. 30)
for each vessel generation. Resuits have shown that coun-
tercarrent blood flow in vessels less than 75 pm in diam-
eter does not significantly contribute to k/k, However,
by extrapolating the experimental data, we (27) predicted
previously that significant enhancement should start to oc-
cur for vessels larger than 80 pm diameter. Our predic-
tions in Reference 27 reveal that a twofold increase in the
effective conductivity k,p/k, will occur when pf Pe is ap-
proximately 1.5 mm and that a sixfold increase will occur
when pfPe = 3 mm. The transitien from conduction- to
convection-dominated axial transport between pk Pe equal
to 1 and 3 mm predicted by this model is, therefore, in
close agreement with the theoretical predictions for k /k,
in Reference 27.

With the use of a newly derived shape factor for con-
duction in the cross-sectional plane of the tissue prepara-
tion, we compared the thermal equilibration lengths cal-
culated by the Weinbaum-Jiji model (21) and the more
accurate three-dimensional model. This newly derived
conduction shape factor is a function of the local geometry
and the convective coefficient # and is found to be much
smaller than that calculated from the widely known bipo-
lar solution (9) for perfect countercurrent heat exchange.
For! = 3.0 and H = 3.0, the newly derived conduction
shape factor is approximately one-third of the old one (9)
and is found to be almost independent of the convection
coefficient h. The axial thermal equilibration lengths of
the tissue calculated by applying a simple one-dimensional
Weinbaum-Jiji model to the tissue preparation are found to
have similar trends to those predicted by the more accurate
three-dimensional theoretical model. When compared
with the three-dimensional model, we found that the
Weinbaum-Jiji equation correctly predicts the shape of the
axial thermal equilibration length versus pZ Pe curve, al-
though it underestimates &,z for larger blood perfusion
rates. This underestimation of %, can be traced to the
assumption in the Weinbaum-Jiji equation that the gradi-
ent of the mean tissue temperature is equal to the gradient
of the mean blood temperature.

Asymptotic analyses presented in References 8 and 22
rigorousiy show that the validity of this assumption re-
quires that € = L*/L* ., the normalized thermal equil-
ibration length of the blood vessels, be <0.2. Here,
L¥en is cither the vessel length or the characteristic

length of the tissue temperature gradient. When p¥Pe << 1
mm, the conditions of the present experiments, the ther-
mat equilibration lengths of the blood vessels in the coun-
tercurrent network are small compared with the length
scale of the macroscopic temperature gradients in the tis-

“sue. Under thege conditions, the Weinbaum-Jiji equation

is in good-agreement with the more accurate three-
dimensional model. However, for p%Pe > 1 mm, the ac-
curacy of the Weinbaum-Jiji equation depends on the
value of . For small h, the decay length is longer, and the
vessel bulk temperatures follow the tissue temperature
gradient closely (see Fig. 6). In this case, the thermal
equilibration between the arfery-vein pairs does not depart
significantly from nearly perfect countercurrent exchange,
and the Weinbaum-Jiji model is a good approximation,
although p* Pe > 1 mm. However, for larger A, the tissue
decay length is short, € is >0.2, and the criterion for the
validity of the Weinbaum-Jiji equation is exceeded. .
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. NOMENCLATURE
Bi = Biot number, hp¥/k,
Cr = specific heat of blood
D = half width of tissue
h = thermal convection coefficient
H = total thickness of tissue
k = thermal conductivity
K' = ratio of conductivitics of vessel to tissue
{ = vessel center to center spacing
L = equilibration length -
Pe = Peclet number of the blood vessel
T = temperature )
u = average blood flow velocity
74 = ratio of u, to u, -
W = Green’s function o
x, ¥, z = Cartesian coordinates in Fig. 2
F = boundary
¥ = density
0 = dimensionless temperature
0, = dimensionless artery bulk temperature at z = 0
& m = Cartesian coordinate
a = conduction shape factor
p = radial coordinate
Pyr = dimensionless radius of the vein
a = artery
b = bulk
f = fluid in vessels
g = plass
§ = source
t = tissue
v = vein
1,2 = upper and lower surfaces




