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Investigation of Biotransport in a
Tumor With Uncertain Material
Properties Using a Nonintrusive
Spectral Uncertainty
Quantification Method
In this study, statistical models are developed for modeling uncertain heterogeneous per-
meability and porosity in tumors, and the resulting uncertainties in pressure and velocity
fields during an intratumoral injection are quantified using a nonintrusive spectral uncer-
tainty quantification (UQ) method. Specifically, the uncertain permeability is modeled as
a log-Gaussian random field, represented using a truncated Karhunen–L�oeve (KL)
expansion, and the uncertain porosity is modeled as a log-normal random variable. The
efficacy of the developed statistical models is validated by simulating the concentration
fields with permeability and porosity of different uncertainty levels. The irregularity in
the concentration field bears reasonable visual agreement with that in MicroCT images
from experiments. The pressure and velocity fields are represented using polynomial
chaos (PC) expansions to enable efficient computation of their statistical properties. The
coefficients in the PC expansion are computed using a nonintrusive spectral projection
method with the Smolyak sparse quadrature. The developed UQ approach is then used to
quantify the uncertainties in the random pressure and velocity fields. A global sensitivity
analysis is also performed to assess the contribution of individual KL modes of the log-
permeability field to the total variance of the pressure field. It is demonstrated that the
developed UQ approach can effectively quantify the flow uncertainties induced by uncer-
tain material properties of the tumor. [DOI: 10.1115/1.4037102]

Keywords: uncertain permeability and porosity, statistical modeling, mass transportation,
uncertainty quantification, Karhunen–L�oeve expansion, polynomial chaos, nonintrusive
spectral projection, sparse quadrature

1 Introduction

Modeling drug transport in tissues has recently gained much
attention in the bioengineering community due to its vast areas of
applications [1], e.g., targeted drug delivery with nanomedicine
[2] and hyperthermia with nanoparticles [3]. Intravenous injection
is perhaps the most widely used method to administer drugs in a
tumor. In this case, the organ usually needs to have well-defined
supplying vessels such as those in liver or kidney. Intratumoral
infusion is an alternative approach to deliver nanoparticles into
the extracellular space in tumors in clinical study [4–8]. This
approach addresses the limitations of vascular particle delivery
and does not depend on tumor vasculature. Positive pressure infu-
sion is often employed in intratumoral infusion to directly inject
nanoparticles into the target tissue. This process is often referred
to as convection enhanced delivery. There are many studies that
address this problem in the literature [9]. These studies rely on
mathematical models of flow in porous media (e.g., Darcy and
Brinkman) and are successful in accounting for the existence of
capillaries, tissue metabolism, etc. However, these mathematical
models rely on the assumption that the tissue properties (e.g., per-
meability) are uniform. MicroCT imaging following nanofluid
infusion [3] often reveals highly irregular nanoparticle distribu-
tions in tumors due to the spatial heterogeneity of the tissue (see
two images from MicroCT imaging of the distribution of nanopar-
ticles in tumors after injection as shown in Fig. 1). As a matter of

fact, the microstructure of tumors is usually heterogeneous. Sev-
eral previous works [10–14] have studied biomass/heat transfer in
tumors with heterogeneous material properties. However, the
structural heterogeneity used in previous studies is usually a deter-
ministic property of a specific tumor. This approach cannot
account for randomness of material properties in tumors. Thus,
the results do not reflect statistical trend, which can provide
insight in cancer therapy design. Therefore, it is of clinical signifi-
cance to model biomass/heat transfer with quantified uncertainties
resulting from the structural randomness in tissues.

As discussed, previous theoretical simulations of biotransport
in porous media usually model a tumor as a structure with uniform

Fig. 1 MicroCT images of nanoparticle distribution (bright regions
enclosed by the dash lines) in two tumors (grey regions): (a) regular
nanoparticle distribution and (b) irregular nanoparticle distribution
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or deterministic heterogeneous transport properties. In contrast, in
this work, statistical models will be developed to approximate
material properties of tumors. Spectral uncertainty quantification
(UQ) methods will be used to quantify the impact of material het-
erogeneities on the mass transport process in tumors. In particular,
a spectral UQ approach based on polynomial chaos (PC) expan-
sions is used to investigate the effect of random permeability on
the pressure and interstitial velocity. Generally, there are two
ways to compute PC expansions: (1) the intrusive approach
[15–21] and (2) the nonintrusive approach [21–24]. The latter is
the approach used in the present work. A nonintrusive UQ
approach provides excellent flexibility in resolving practical com-
plex thermal fluids problems. Specifically, in this approach, no
modification is needed for the available deterministic simulation
tools. This can take full advantage of the contemporary develop-
ment of high-fidelity computational fluid dynamics methods. In
the present work, a nonintrusive spectral projection approach, uti-
lizing Smolyak sparse quadrature [25], is used to compute the PC
coefficients of the quantities of interest. The information collected
from this study can be used to study concentration field in biologi-
cal systems with uncertain permeability and porosity.

We note that most previous uncertainty analyses of the
biomass/heat transfer process were based on perturbation analysis
[26,27] or Monte Carlo (MC) methods [28,29]. Although a large
amount of simulations can guarantee that MC achieves conver-
gence, the computational cost is usually prohibitive, especially for
intricate flow problems. In contrast, an UQ approach based on PC
expansions, as developed in the current study, provides an effi-
cient modeling framework to quantify the uncertainty in a compli-
cated problem. A similar UQ approach but with the intrusive
spectral projection method has been adopted by other researchers
[30,31] to analyze geophysical flow in porous media. To the best
of the authors’ knowledge, this study is the first attempt to system-
atically model the uncertain heterogeneous tumor structure as a
random process and to quantify the uncertainties in pressure and
velocity fields using a nonintrusive PC approach.

The remainder of the paper is organized as follows: The mathe-
matical models, including the Darcy’s law constrained by mass
conservation, the convection equations of concentration, and the
model parameters, are introduced in Sec. 2. In Sec. 3, the statisti-
cal models for uncertain permeability and porosity are presented.
Specifically, the uncertain permeability is modeled as a log-
Gaussian random field, and a truncated Karhunen–L�oeve (KL)
expansion is used to control its dimension. The uncertain porosity
is modeled as a log-normal random variable. Propagating these
statistical models through the governing partial differential equa-
tions (PDEs) will result in random pressure, velocity, and concen-
tration fields. A full investigation of the uncertain nature of the
time-dependent concentration field, which can be directly meas-
ured in experiments, is the ultimate goal of our research. As a first
step, a brief illustration of uncertainties in concentration field is
provided at the end of Sec. 3, which also demonstrates the efficacy
of the developed statistical models. To quantify the uncertainties
in the time-dependent concentration field, we need to have a com-
plete understanding of how material uncertainties affect pressure
and velocity fields, the uncertainty of which will be further propa-
gated into the concentration fields. Therefore, a major focus of
this work is to quantify the uncertainties in pressure and velocity
fields using PC expansions, which is elaborated in Sec. 4. Numeri-
cal results are presented and discussed in Sec. 5. A global sensitiv-
ity analysis [24,32–35] is also performed for the pressure field in
the same section. Section 6 concludes this study.

2 Mathematical Model

The pressure, velocity, and concentration fields in a spherical
tumor are simulated when single-needle injection occurs at the
tumor center. Consider the Darcy’s law constrained by mass con-
servation in the spherical coordinate system

r � j
l
rP
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¼ 0; r ¼ @
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where P is the pressure, j is the permeability, l is the fluid
dynamic viscosity, r is the radial distance from a fixed origin, and
h and u are the polar and azimuth angles, respectively. In the cur-
rent study, a two-dimensional model in the ðr;uÞ plane with a
fixed polar angle h ¼ p=2 is used. As a result, the governing equa-
tion for the pressure P is written as
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The two-dimensional physical domain, represented using ðr;uÞ
coordinates, is

D ¼ fðr;uÞ: Rneedle < r < Rtumor; 0 < u < 2pg

Herein, Rtumor is the radius of the tumor and Rneedle is the radius of
the needle, which is used to inject nanofluid into the tumor; see
Fig. 2 (top) for a depiction of the computational domain. The
boundary conditions for the pressure equation are specified as
follows:

Fig. 2 Top the two-dimensional computational domain is given
by a circle of radius Rtumor with the concentric inner circle of
radius Rneedle removed. This models a tumor with an injection
site at the center; and bottom: the pressure field with constant
material properties.
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p ¼ 0; r ¼ Rtumor
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@r
¼ �Ql
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; r ¼ Rneedle
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>: (3)

Note that to enforce mass conservation in the spherical coordinate
system, 4pR2

needle is used in the natural boundary condition Eq. (3)
at r ¼ Rneedle. Periodic boundary condition is enforced in the u
direction.

The nanoparticle concentration field C is governed by the
advection–diffusion equation

@C

@t
þr � vCð Þ ¼ r � DerCð Þ � kf C (4)

Here, De is the effective diffusion coefficient, kf is the deposition
rate coefficient, and v is the interstitial velocity in the flow field,
which by Darcy’s law is given by

v ¼ � j
/l
rP

where / is the porosity. The initial and boundary conditions are
defined as follows:

C t ¼ 0; r 6¼ Rneedle;uð Þ ¼ 0

C t; r ¼ Rneedle;uð Þ ¼ 1

@C

@r
t; r ¼ Rtumor;uð Þ ¼ 0

8>>>><
>>>>:

(5)

Periodic boundary condition is enforced in the u direction.
The second-order accurate central finite difference scheme is

used to discretize the pressure Eq. (2), and an implicit
Gauss–Seidel method in the r-direction is used to solve the result-
ing discrete system. In our computations, we ensure that the abso-
lute residual is reduced to below 10�8. In Fig. 2 (bottom), we
report the pressure field computed by solving the equation with
parameters as specified in Table 1, over the discretized computa-
tional domain. The convection term of the concentration Eq. (4) is
discretized with the second-order upwind scheme, and the equa-
tion is marched in the temporal direction using the explicit two
stage Runge–Kutta scheme.

3 Statistical Model for Uncertain Parameters

The tumor is a heterogeneous medium with uncertain material
properties, namely, permeability and porosity. Below, we detail
our modeling assumptions on the statistical properties of the per-
meability field, followed by the statistical model for uncertain
porosity.

3.1 Uncertain Permeability Parameterization. The perme-
ability field j is modeled as a random field j ¼ jðx;xÞ, where x
is a spatial point in D and x belongs to an appropriate sample
space. Specifically, we model j by a log-Gaussian random field as
follows: letting aðx;xÞ ¼ logðjðx;xÞÞ, we assume

aðx;xÞ ¼ a0 þ zðx;xÞ (6)

Here, a0 is the pointwise mean of the process and z is a centered
(mean zero) Gaussian process with pointwise variance Varfzðx; �Þg
¼ r2

a, for every x 2 D. To fully specify the distribution law of a,
we need to define a0, ra, as well as the correlation structure of the
Gaussian process z. First, we specify the values for a0 and ra

r2
a ¼ 0:25; a0 ¼ logð0:5Þ þ r2

a

The rationale behind the choice of a0 is to ensure that the mode1

of the j distribution at each spatial point is expða0 � r2
aÞ ¼ 0:5,

which is the nominal value for j given in Table 1. The selected
value of r2

a allows for reasonable variations of j in a physically
meaningful range. In Fig. 3, we depict the probability density
function as a log-normal random variable, with these parameter
choices to illustrate the distribution of j at each spatial point.

Next, we specify the correlation structure of the stochastic log-
permeability field. We assume z in Eq. (6) has a correlation func-
tion of the form

c x; yð Þ ¼ r2
a exp � 1

‘
jjx� yjj2

� �
; x; y 2 D (7)

where ‘ > 0 controls the correlation length and, as before, D is
the physical domain of the problem. Note that the covariance
operator of the process z is the linear operator C : L2ðDÞ
! L2ðDÞ, defined by

½Cu�ðxÞ ¼
ð

D

cðx; yÞuðyÞ dy; u 2 L2ðDÞ

Let fkigi�1 be (real, non-negative) eigenvalues of C and feigi�1

the corresponding eigenfunctionsð
D

cð�; yÞeiðyÞ dy ¼ kieið�Þ; i ¼ 1; 2; 3;…

In what follows, we use a truncated KL expansion (e.g., see Refs.
[21] and [37]) to represent a

aðx;xÞ � a0ðxÞ þ
XNKL

k¼1

ffiffiffi
k
p

knkðxÞekðxÞ (8)

Table 1 Nominal values for the model parameters [36]

Parameters Nominal value

Tumor permeability, j 0.5 md
Tumor porosity, / 0.2
Fluid viscosity, l 8:9� 10�4 Pa � s
Infusion rate, Q 1 lL=min
Needle radius, Rneedle 0:25 mm
Tumor radius, Rtumor 5 mm

Fig. 3 Log-normal model for permeability values (at each spa-
tial point in the tumor)

1Consider a log-normal random variable X ¼ expðlþ rnÞ, where n is a standard
normal random variable, l 2 R, and r 2 Rþ . The mode of X is given by
expðl� r2Þ.

Journal of Biomechanical Engineering SEPTEMBER 2017, Vol. 139 / 091006-3

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org/ on 08/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



where due to Gaussianity of the process, nk are independent stand-
ard normal random variables. Note that in this formulation,
the uncertainty in a (and hence j) is characterized by n
¼ ðn1; n2;…; nNKL

Þ. Therefore, we use

jðx; nÞ ¼ exp a0ðxÞ þ
XNKL

k¼1

ffiffiffi
k
p

knkekðxÞ
 !

(9)

as the statistical model for the uncertain permeability field.
The truncation of the KL expansion of the Gaussian process

aðx;xÞ is traditionally done by choosing NKL such that

rNKL
¼

XNKL

k¼1

kk

X1
k¼1

kk

< tol (10)

where tol is a user-specified tolerance. Note that computing the
denominator in Eq. (10) is straightforward in the present setup
and does not require computing all the eigenvalues. We know by
Mercer’s Theorem [38] that

ð
D

cðx; xÞ dx ¼ TrðCÞ ¼
X1
k¼1

kk

Thus, with our choice of covariance function (7),Ð
Dcðx; xÞ dx ¼ r2

avolðDÞ. Therefore,
P1

k¼1 kk ¼ r2
avolðDÞ. In Fig.

4, we report the normalized eigenvalues of the covariance opera-
tor (left) and the ratio rNKL

(right).
In Fig. 5 (top row), we show two realizations of the log-

permeability field with correlation length ‘ ¼ 5mm. For each real-
ization, we solve the pressure equation and report the resulting

pressure field (Pa) in Fig. 5 (bottom row). In the results reported
in Fig. 5, we used a truncated KL expansion with NKL¼15 modes.
Note that with n¼ 15 modes, we have rNKL

�0:86, indicating that
86% of variance is captured by letting NKL¼15. It is also impor-
tant to note that while the higher order KL truncations provide
more accurate representation of the random field, the governing
PDE, which is the Poisson pressure equation in this case, has a
smoothing solution operator that is not very sensitivity to the
higher order, highly oscillatory, modes of the parameter. This is
quantified in Sec. 5 by performing a sensitivity analysis of the
pressure field with respect to the KL modes.

3.2 Uncertain Porosity Parameterization. Following the
development in Ref. [31], we model the porosity by a scalar-
valued random variable. Specifically, we assume a log-normal dis-
tribution for /

/ ¼ expðbðgÞÞ; bðgÞ ¼ b0 þ rbg (11)

where g is a standard normal random variable, and b0 and rb are
the mean and standard deviation of log-porosity, respectively. We
use r2

b ¼ 0:25 and b0 ¼ logð0:2Þ þ r2
b. With these parameter

choices, the mode of the porosity distribution coincides with its
nominal value given in Table 1, and a reasonably wide range of
values lie in the high-probability region of the distribution.

Using the aforementioned parameterization, we get the follow-
ing representation for the uncertain interstitial velocity:

v x; n; gð Þ ¼ �j x; nð Þ
/ gð Þl

rP x; nð Þ (12)

The uncertainty in the velocity field then propagates in the
advection–diffusion equation and leads to a stochastic concentra-
tion field C ¼ Cðx; n; gÞ.

3.3 Impact of Uncertainties in Material Properties on
Drug Transport. Predictions obtained by simulating the govern-
ing PDEs should account of the uncertainties in material proper-
ties. This requires propagating the statistical model for material
properties through the governing equations. In the present prob-
lem, the statistical model for permeability field enters the Poisson
pressure equation (2), whose solution is the (uncertain) pressure
field Pðx; nÞ. Then, using the model for uncertain interstitial
velocity (12), we can solve the concentration equation (4). Here,
we demonstrate the efficacy of the statistical models by illustrat-
ing the uncertainties in the concentration field originated from the
uncertain material properties.

We illustrate the impact of uncertainties in material properties
on the concentration field by reporting two realizations of the con-
centration fields associated with permeability fields of different
correlation lengths, namely, ‘ ¼ 5 mm, 2 mm, 1 mm, and 0:5 mm,
at 10 min in Fig. 6. It is observed that as the correlation length in
the correlation function decreases, the shape of the outer boundary
becomes more and more irregular. This bears reasonable visual
agreement with the MicroCT images from experiments as shown
in Fig. 1, demonstrating the efficacy of the developed statistical
models for the uncertain permeability and porosity. Note that the
shape irregularity of the outer boundaries of concentration fields
is used here for qualitative visual validation between numerical
and experimental results. This is because that in experiments,
nanoparticles are directly injected into the interstitial space of
tumors; however, in numerical simulation, the tumors are modeled
as porous media with porosity and permeability. Therefore, a
point-to-point comparison between numerical and experimental
results is not meaningful. Instead, we focus on the shape irregular-
ity of the outer boundaries of concentration fields, which reflects
the uncertainty in porosity and permeability, or equivalently, the
uncertainty/heterogeneity in material properties of tumors used in
experiments.

Fig. 4 The normalized eigenvalues (top) and the ratio rNKL
that

quantifies variance saturation as a function of n (bottom), cor-
responding to correlation length ‘5 5 mm, which is the radius
of the tumor model
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The full investigation of uncertainties in concentration field can
be divided into two subtasks: (1) understanding the impact of
uncertainties in material properties on pressure field and pressure
gradient and (2) developing a statistical framework for under-
standing the uncertainties in concentration field. This paper is
focused on the first task. In the following, we utilize an efficient
computational framework based on PC expansions for character-
izing the uncertainties in pressure field (and subsequently pressure
gradient and interstitial velocity).

4 Polynomial Chaos for Representing Uncertain

Pressure Field

We represent the model observables using polynomial chaos
(PC) expansions [21,37,39]. PC expansions are series expansion
of random variables in a multivariate orthogonal polynomial
basis. For example, we represent the pressure field as

Pðx; nÞ �
XNPC

k¼0

ckðxÞWkðnÞ (13)

where Wk’s are appropriately chosen orthogonal polynomials and
ck’s are expansion coefficients. Since in the present work n is a
d-dimensional Gaussian random vector, we choose d-variate
Hermite polynomials for fWkgNPC

k¼0. More precisely, if we denote by
fwjðniÞg1j¼1 the univariate Hermite polynomial basis corresponding
to ni, we form the multivariate PC basis functions as follows:

WkðnÞ ¼
Yd

i¼1

wak
i
ðniÞ; k ¼ 0; 1; 2;… (14)

where ak ¼ ðak
1; a

k
2;…; ak

dÞ is a multi-index and d is the dimension
of the random variable. With this notation, wak

i
is the Hermite

polynomial of order ak
i . The truncation of the PC expansion can

be done in different ways. We choose total-order truncation [21],
resulting in a complete polynomial space, in which case

NPC þ 1 ¼ pþ dð Þ!
p!d!

(15)

where p is the maximum total polynomial degree. We note that
another simple way to construct WkðnÞ’s is to use a full tensor
product approach, in which case, NPC þ 1 ¼ ðpþ 1Þd , which is
much larger than NPC in Eq. (15). For example, for p¼ 3 and
d¼ 15, we get NPC ¼ 816, if the complete polynomial space is
used; while NPC ¼ 1; 073; 741; 824, if the full tensor product of
univariate polynomials is used.

Once a PC expansion is available, statistical properties of P can
be computed at negligible computational cost. For example, we
have immediate access to the mean and variance of the pressure
field through

EðPðx; nÞÞ ¼ hPðx; �Þ; 1i ¼ c0ðxÞ

and

VarðPðx; nÞÞ ¼ hPðx; �Þ � EðPðx; �ÞÞ;Pðx; �Þ � EðPðx; �ÞÞi

¼
XNPC

i¼1

c2
i ðxÞhWi;Wii

Note that these relations follow from orthogonality of
fWkgP

k¼0; hWk;Wli¼dklhWk;Wki;k;l¼1;…;P, and the convention
W0�1.

Moreover, we can compute statistical distribution of P effi-
ciently by sampling the PC expansion of P, instead of repeated
expensive solutions of the high-resolution pressure equation.

Fig. 5 Two realizations of the uncertain log-permeability field (top) and the corresponding
pressure fields (bottom)
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4.1 Nonintrusive Spectral Projection. The PC expansion
coefficients are evaluated via Galerkin projection; that is, we use

hP;Wli ¼
ð

Pðx; nÞWlðnÞqðnÞdn

¼
XNPC

k¼0

ð
ckðxÞWkðnÞWlðnÞqðnÞdn

¼
XNPC

k¼0

ckðxÞhWk;Wli ¼ clðxÞhWl;Wli

(16)

where qðnÞ is the probability density function corresponding to a
d-dimensional standard normal distribution. In this study, numeri-
cal quadrature is used to calculate hP;Wli as

hP;Wli �
XN

i¼1

PðnðiÞÞWlðnðiÞÞwi (17)

where nðiÞ and wi, i ¼ 1;…;N, are quadrature nodes and weights,
respectively. This approach of computing spectral coefficients
with quadrature is known as nonintrusive spectral projection.

4.2 The Choice of Quadrature Formula. The tensor product
of univariate quadrature rules can be used in Eq. (17). This is
expressed as follows:

hP;Wli �
Xp

i1¼0

� � �
Xp

id¼0

Pðni1 ;…; nid ÞWlðni1 ;…; nid Þ
Yd

k¼1

wik (18)

Herein, a multi-index i ¼ ði1;…; idÞ is introduced to indicate the
position of quadrature points in the corresponding one-
dimensional (1D) quadrature rules. As a result, nik and wik ;
k ¼ 1;…; d, are, respectively, the quadrature points and weights
in the one-dimensional (1D) quadrature rules. Note that the com-
putational cost of the numerical quadrature can be huge when the
dimension is relatively large. For example, if p is selected as
three, and d is selected as 15, the tensor product approach needs
ðpþ 1Þd ¼ 415 ¼ 1; 073; 741; 824 evaluations.

To temper the computational cost, we use the Smolyak sparse
quadrature [25,40] to carry out the integration in Eq. (17). This
procedure is briefly reviewed in the following; e.g., see Ref. [40]
for more details.

As a first step, define the successive 1D univariate quadrature
rules as Qik ; ik ¼ 0;…; p and k ¼ 1;…; d, with increasing accu-
racy. The difference of successive 1D operators is defined as

Dik¼0 ¼ Qik¼0; Dik>0 ¼ Qik � Qik�1; k ¼ 1;…; d (19)

As a result, the 1D quadrature of any variable V can be written as

Qik
½V� ¼

Pik
j¼0 Dj½V�. With the multi-index i ¼ ði1;…; idÞ, a set

Zd
q for any integer q is defined as

Fig. 6 Two sets of realizations of the uncertain log-permeability fields and the corresponding concentration fields at 10 mins.
From left to right, the correlation lengths ‘ are 5 mm, 2 mm, 1 mm, and 0:5 mm, respectively.
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Zd
q<0 ¼1; Zd

q�0 ¼ i 2 Zd :
Xd

k¼1

ik ¼ d þ q

( )
(20)

where Zd is the d-dimensional set of non-negative integers. The
Smolyak sparse quadrature for any variable V with accuracy level
pþ1 can then be expressed as

Aðd; pÞ½V� ¼
Xp

q¼0

X
i2Zd

q

ðDi1
	 � � � 	 Did Þ½V� (21)

where 	 stands for the tensor product operation. Note that the
Smolyak sparse quadrature rule can significantly alleviate the so-
called “curse-of-dimension” caused by the full tensor product
operation (18). For example, with the univariate Gaussian quadra-
ture rule, a level four (i.e., p¼ 3) Smolyak for a 15-dimensional
problem only needs 5021 evaluations [40] (comparing to
1,073,741,824 evaluations resulted from the full tensor product).
We note that a quadrature rule with accuracy level k integrates
complete polynomials of total degree 2k � 1 exactly. As observed
from Eqs. (16), (18), and (21), to preserve discrete orthogonality
when evaluating hWi;Wji, the total degree of the integrand should
not exceed 2pþ 1. As a result, the total degree of the orthogonal
polynomial WiðnÞ should not exceed p, no matter full tensor prod-
uct or Smolyak sparse grids are adopted for quadrature.

5 Numerical Results and Discussion

In this section, we present our numerical results analyzing the
propagation of uncertainties in material properties to the pressure
field and interstitial velocity.

5.1 Uncertainty Quantification of the Pressure Field. Here,
we focus on understanding and quantifying the impact of uncer-
tainties in material properties on the pressure field using its PC
representation. We consider the correlation length in Eq. (7) to be
‘ ¼ 5 mm, which is the radius of the domain. Following the trun-
cation strategy outlined in Sec. 3 (see also, Fig. 4), we retain 15
KL modes, in the KL expansion of the log-permeability field. We
build a PC expansion for the pressure using a level four Smolyak
in the 15-dimensional parameter space with 5021 quadrature
nodes, which is suitable for computation of PC expansions of
degree up to three. The accuracy of the PC representation is con-
firmed by testing convergence in distribution and in L2 as the PC
order increases.

5.1.1 Building the PC Model and Validation. We consider the
pressure field over the whole computational domain and compute
its PC expansions, Pðr;u; nÞ �

PP
k¼0 ckðr;uÞWkðnÞ. We begin

our analysis by focusing on the average pressure at the injection
site; i.e., we consider

PneedleðnÞ ¼
ð2p

0

Pðrneedle;u; nÞ du (22)

Using the PC representation of the pressure field, we have

PneedleðnÞ �
XP

k¼0

ð2p

0

ckðrneedle;uÞ du

" #
WkðnÞ

To test the convergence of this approximation, as we increase the
PC order, we sample the aforementioned PC representation 105

times and generate approximate probability density functions of
Pneedle via kernel density estimation. These results are reported in
Fig. 7 (left). We note that the distributions obtained from second-
and third-order expansions are qualitatively close to one another,
indicating that a third-order PC expansion might provide an
adequate statistical model for the pressure field.

To enable a systematic test of the validity of the statistical
model provided by the PC expansion, we generate a MC sample

Smc ¼ fnigNmc

i¼1

with Nmc ¼ 1000, and compute the pressure field Pðx; niÞ, by solv-
ing the pressure equation, for i ¼ 1;…;Nmc. We compare the
probability density function of third-order PC expansion of Pneedle

with the histogram of the Pneedle model evaluations at the Monte
Carlo points in Fig. 7 (right). We note that the distribution
obtained using the PC model agrees well with the empirical distri-
bution of Pneedle constructed using Monte Carlo sampling.

To fully validate the accuracy of the PC model for the pressure
field, we compute the following approximate relative L2 error

E r;uð Þ ¼

"PN
j¼1

ðPðr;u; njÞ �
PNPC

k¼0

ckWkðnjÞÞ2
#1=2

PN
j¼1

Pðr;u; njÞ2
" #1=2

; nj 2 Smc

The results in Fig. 8 report Eðr;uÞ corresponding to PC expan-
sion of order p¼ 1, 2, 3. We note that Eðr;uÞ is below 1% for the
third-order PC approximation of the pressure field, giving us con-
fidence that the third-order PC expansion provides a sufficiently
accurate representation of the uncertain pressure field.

5.1.2 Statistical Analysis of the Pressure Field. In Fig. 9, we
depict mean and standard deviation of the pressure field. It is
observed that both the value and uncertainty level in pressure is
high near the injection site, with diminishing values as we move
away from the center; the latter is further illustrated in Fig. 9
(right). From Fig. 9, we also notice that higher levels of pressure
uncertainties associate with larger pressure gradients. This indi-
cates that when uncertainties in material properties are propagated
into the pressure equation (2), it can induce large uncertainties in
the pressure field where there exists large pressure gradients; for
regions with small pressure gradients, the induced uncertainties in
the pressure field are also small, even though the uncertainty lev-
els of the materials are the same as those in the regions with large
pressure gradients.

5.1.3 Variance-Based Sensitivity Analysis. The uncertainty in
permeability field, which is modeled as a log-normal processes
described earlier, is parameterized by the random vector n. Here,
we perform a global sensitivity analysis to assess the contribution
of each of the coordinates of n to total variance of the pressure
field. This is done by computing the so-called total Sobol indices
[33], which we explain briefly here. At a spatial point x, the total-
order sensitivity index with respect to the ith input variable ni,
denoted by TiðxÞ, quantifies the total contribution of ni to the var-
iance of PðxÞ. For mathematical definition of the Sobol indices,

Fig. 7 Left: tracking the convergence of PDFs of the PC repre-
sentation of Pneedle; right: comparing the PDF of the third-order
PC expansion of Pneedle (solid line) with its empirical distribu-
tion generated through Monte Carlo sampling (histogram)
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we refer the readers to Refs. [33] and [41]. The computation of
Sobol indices using sampling-based methods is generally a diffi-
cult problem due to the need for a large number of function evalu-
ations. However, once a PC representation of a random variable is
available, computation of Sobol indices can be done at a negligi-
ble computational cost [24,34,35]. In particular, given the PC
Pðx; nÞ �

PNPC

k¼0 PkðxÞWkðnÞ, we have

Ti xð Þ �

X
k2Ki

Pk xð Þ2jjWkjj2

XNPC

k¼1

Pk xð Þ2jjWkjj2

Here, Ki is an index set that contains indices of all terms in the PC
expansion that contains ni; e.g., see Ref. [24] for details.

In Fig. 10, we report Ti over the physical domain. To facilitate
the interpretation of these sensitivity indices, we also consider the
following averaged indices: Let Ti be the total sensitivity index
due to ni, as mentioned earlier. We can define

�Ti ¼
1

jDj

ð
D

Ti xð Þ dx

These average indices are summarized in Fig. 11 (left). We also
compute the total sensitivity indices for the average pressure at
the injection site, defined in Eq. (22). This is reported in Fig. 11
(right).

Based on the presented sensitivity analysis, we make the fol-
lowing observations: (1) The magnitude of the indices for pressure
field is small for higher order KL modes. This is seen most easily
in Fig. 11 (left) and can be also inferred from the images in
Fig. 10. The diminishing contribution of the higher order KL
modes to the variability in pressure further justifies the present

truncation of KL expansion. (2) The sensitivity analysis results for
Pneedle is interesting; in that, only three KL modes (modes 1, 5,
and 9) have notable impact on the variance of this quantity. This
clearly shows that for certain observables, the sensitivity indices
do not follow the decay of the eigenvalues of the corresponding
KL modes. (3) It is interesting, but not surprising, that the first KL
mode has the most dominant impact on the variance of the pres-
sure field. All these observations point to the fact that only a sub-
set of KL modes significantly contributes to the uncertainty in the
pressure field. From a practical point of view, such information
can guide reduction of parameter dimension, which will lead to
significant computational saving in the UQ process. Further inves-
tigation of such parameter reduction approaches will be the sub-
ject of our future work.

5.2 Uncertainty Quantification of the Interstitial Velocity.
Consider the uncertain interstitial velocity defined in Eq. (12).
Here, we focus on vr ¼ �ðj=/lÞð@P=@rÞ. The PC representation
of ð@P=@rÞ along with statistical models for j and / enables the
cheap-to-evaluate approximation

vr �; n; gð Þ ¼ � j �; nð Þ
/ gð Þl

XNPC

k¼0

dk �ð ÞWk nð Þ
 !

(23)

where fdkðxÞgNPC

k¼0 are PC coefficients of ð@P=@rÞ at a spatial point
x 2 D, and jðx; nÞ and /ðgÞ are given by Eqs. (9) and (11),
respectively. Using this approximation, we can efficiently charac-
terize the statistical properties of vr. In Fig. 12, we report the
mean and standard deviation of vr in the physical domain, as well
as distribution of vr as we move away from the injection site. The
results have been generated by computing Eq. (23) at a Monte
Carlo sample fðni; giÞgN

i¼1, with N ¼ 104. Similar to the random
pressure field, it is observed that both the value and variation of

Fig. 8 Computing the relative L2 error of the PC representation of the pressure field with varying PC order

Fig. 9 Mean (left) and standard deviation (middle) of pressure, and distribution of P(r ;u) for a fixed u, and for
increasing r (right)
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Fig. 10 Total sensitivity indices for the pressure field
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the interstitial velocity are high near the injection site, where there
exist large velocity gradients.

6 Conclusions

As a long-standing challenge, the distribution of permeability
and porosity in a porous tissue is hard to measure or model. We
propose to model the uncertain material properties with a statisti-
cal approach, in which the permeability is modeled as a random
field, and porosity is represented as a random variable. The uncer-
tain nature of the concentration field is visualized from several
realizations with random permeability and porosity. The irregular-
ity shown in concentration fields bears reasonable visual agree-
ment with MicroCT scan results.

A nonintrusive spectral uncertainty quantification approach is
utilized to assess the uncertainties in flow fields originated from
the structural heterogeneity of porous media. To reduce the
dimensions in the probability space, a truncated KL expansion is
used to represent the uncertain permeability field. The uncertain
outputs from the governing partial differential equations are
approximated using the PC expansion. A nonintrusive spectral
projection approach, using Smolyak sparse quadrature, is used to
determine the coefficients of the PC expansion.

The errors in the PC expansion of the random pressure field are
examined by comparing the PC results with those from a Monte
Carlo sample, as the degree of the PC expansion increases. It is
found that the third-order PC expansion provides a sufficiently
accurate representation of the random pressure field originated
from uncertain permeability. With this PC expansion, the statistics
of both the pressure field and the interstitial velocity field is ana-
lyzed. It is found that after propagated into the pressure field, the
uncertainties in material properties can induce large pressure
uncertainties, where there exist large pressure gradients. Similarly,
the material uncertainty can induce large uncertainties in the
velocity field, where there exist large velocity gradients. In
regions with small pressure/velocity gradients, the uncertainties in
the pressure/velocity field are also small, even though the uncer-
tainty levels of the materials are the same as those in the regions
with large pressure/velocity gradients. A global sensitivity

analysis is also performed to assess the contribution of each com-
ponent of the random vector parameterizing the uncertain perme-
ability field to the total variance of the pressure field. It is found
that only certain components significantly contribute to the uncer-
tainty in the pressure field. This information can help further
reduce the dimensions of the probability space, thus further
decreasing the computational cost of UQ.

We note that in a practical clinical setting, image-based therapy
is rising as an invaluable personalized medical tool. Image-based
simulation can be used to assist clinical protocol design. However,
the computational cost to construct the intratumoral structures and
to conduct flow simulation can be huge. Heterogeneous and com-
plex tumor structure and many transport mechanisms involved in
nanoparticle spreading in tumors will further make the cost of a
high-fidelity image-based simulation prohibitive. Instead, the cur-
rent study presents a flexible UQ framework to represent and
parameterize uncertainties in material properties of tumors and to
formulate a porous media flow model that enables efficient com-
putational modeling of biotransport in tumors with quantified
uncertainties in model response. Although it is preferable that the
distribution of porosity and permeability be derived from experi-
mental data, log-normal distribution used in the present study can
serve as a good starting point. The statistical information obtained
from the UQ analysis can be used to further improve the clinical
protocol designs, e,g., by optimizing drug transport in tumors. We
also note that the UQ framework developed here can be adapted
to quantify uncertainties in other biotransport systems, e.g., intra-
venous administration of the nanoparticles in clinical practice.
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