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1 Introduction

Several bioheat transfer models are currently used to exam B
the effect of microvascular blood flow and/or vascular geomet
on the local heat transf¢l—3]. These continuum models collec-
tively describe the temperature distribution over a representat 2
control volume, whose size is much larger than the scale of t%(/
thermally significant blood vessels and much smaller than t
scale of the whole tissue. Due to the large range in size of t
thermally significant vessels, it is difficult to define such a contrcf s
volume. The regions of validity of these continuum models havoee
been extensively discussed and clarified in the pastl2. Fur-
ther, in applications where point to point temperature nonunifo
mities are required near discrete large vessels, vascular models
necessary to accurately predict the tissue temperature field.
expected, Crezee and Lagendiji3] have found that blood flow
in large, thermally unequilibrated vessels is the main cause
temperature inhomogeneity during hyperthermia treatment.

In this paper, we will examine the thermal equilibration o
blood in vessels between 3Qdm and 1000um in diameter to
determine their contribution to the total blood-tissue heat ex-
change. Lemons et aJ]9] have shown that vessels in this size
range occur nearly exclusively as countercurrent pairs in skele
muscle and have a thermal signature indicating that they under
partial thermal equilibration with the surrounding tissue. The
countercurrent vessels are often referred to as supply artery-v,
pairs or SAV vessels in muscle tissue. They lie outside the ran
of validity of the Weinbaum-Jiji equation, which experiments an
theory [14,15 have demonstrated, is limited to countercurren[
vessel pairs 0f<200 um diameter. At present, there is no ad-
equate theory for describing the thermal contribution of the
large blood vessels, and they are too numerous to be individu
treated in numerical simulations. This paper is Part Il of a two-
part investigation in which a new basic model is developed f%
blood-tissue heat transfer in skeletal muscle tissue. Part |
confined tos vessel tissue cylinders and vessels less thanu300

diameter.

It is well known that the Pennes perfusion source term overe%p
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A New Fundamental Bioheat
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II: Temperature of SAV Vessels

In this study, a new theoretical framework was developed to investigate temperature
variations along countercurrent SAV blood vessels from 300 to Lo®0diameter in
skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji
bioheat equation and, heretofore, have been treated using discrete numerical methods. A
new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy,
Murray’s law, and the assumption of uniform perfusion. The thermal interaction between
the blood vessel pair and surrounding tissue is investigated for two vascular branching
patterns, pure branching and pure perfusion. It is shown that temperature variations
along these large vessel pairs strongly depend on the branching pattern and the local
blood perfusion rate. The arterial supply temperature in different vessel generations was
evaluated to estimate the arterial inlet temperature in the modified perfusion source term
for the s vessels in Part | of this study. In addition, results from the current research
enable one to explore the relative contribution of the SAV vessels and the s vessels to the
overall thermal equilibration between blood and tiss{iBOI: 10.1115/1.1431263

timates the actual blood perfusion effect in tissue in two ways.
First, it considers that all the heat leaving the artery is absorbed by
; local tissue and there is no venous rewarming. It has been
é’uggested by previous researchgi§,17] that a “correction co-
efficient” which is less than unity and accounts for venous re-
rming should multiply the Pennes perfusion term. A correction
Gefficient which is close to zero implies a significant countercur-
Egnt rewarming of the paired vein and a coefficient of unity no
arming. In Part | of this studj18], a new model for muscle
ue heat transfer was developed using Myrhage and Eriksson’s
scription[19] of a muscle tissue cylinder surrounding counter-
current secondary vesse(ls vessely as the basic heat transfer
{init. The thermal equilibration of the returning blood in #heein
rigorously analyzed to determine the venous return tempera-
Te in the tissue cylinder. This led to a modified Pennes bioheat
equation with a new perfusion source term, which can be used to
8edict average tissue temperature distribution in muscle tissue
egions containing vessels less than 300 in diameter. It has
een shown that for most muscle tissues, the “correction coeffi-
cient” varies between 0.6 to 0.8 suggesting that there is 20 percent
16 40 percent venous rewarming in te@essel-tissue cylinder. A
g cond limitation of the Pennes perfusion source term is that the
erial temperature is assumed to be equal to the body core tem-
ature. Based on the analysis in Part | this arterial temperature
¥hould be the local SAV artery temperature at the inlet ofghe
Vélsel tissue cylinder. SAV vessels of 1000 to 300 diameter
Ehieve only partial thermal equilibration with the surrounding
ssue which is then completed when the blood enters tressel
ssue cylinders. It is, thus, necessary to study the thermal equili-
bration along these partially equilibrated larger blood vessels if we
ish to determine the relative importance of the SAV vessels and
e s vessels in the overall heat exchange.
As sketched in Fig. 1, thevessel tissue cylinder is supplied by
e P vessels which branch off from the SAV vessel pairs. Phe
ssels are relatively short and thus, the local arterial inlet tem-
perature appearing in the modified Pennes source term is well
proximated by the local arterial temperature in the SAV vessel
air. This temperature depends not only on the interaction be-
tween the countercurrent SAV vessels but also on the local tissue
temperature distribution. The SAV vessels bifurcate from the ma-
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that run along the axis of the limb. A central question in analyzing
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Fig. 1 Proposed vasculature showing the relationship between the muscular arter-
ies, the SAV tissue cylinder, and the s tissue cylinder in a human limb

the countercurrent equilibration in the SAV vessels is to determifiew rates in an exercising muscle. We intend to characterize this
how much thermal energy leaving the artery returns to the couequilibration for the first time and obtain realistic estimates for
tercurrent vein and how much is lost to the surrounding tissu&,;, as a function of branching distance from the axial vessels that
This redistribution of energy is a function of the local tissue tenrun along the length of the limb.
perature distribution and the vascular geometry. The anatomicStrictly speaking, an investigation of the temperature distribu-
structure of the microvascular bed in thevessel tissue cylinder tion in the SAV vessels requires the knowledge of the thermal
and our modified Pennes equation were presented in Part | of timteraction between all the blood vessels and tissue, which is im-
study. In Part Il we primarily focus on the SAV vessel pairs.  practical. In this paper, contributions of tievessels and thes
Anatomically, theP, s, andt vessels are the first three branchesessel branches to the total heat exchange are treated as a continu-
of the final generations of a branching network that was initiallpus bleed-off from the SAV vessel pasee Fig. 1L The spacing
described in peripheral muscle tissue in Weinbaum €t3al.This of the large SAV vessels was never fully described in previous
network is part of a space filling structure for all muscle tissue. lvestigations that attempted to develop a model for the deep
typical circulatory system in a human limb is fed mainly by one omuscle tissue of the limb. Our solution approach for determining
two major pairs of countercurrent arteries and veins that run axire temperature decay in the SAV vessel pair is a two-step proce-
ally along the limb. As schematically illustrated in Fig. 1, thedure. First, a large tissue cylinder surrounding the SAV vessel pair
blood vessels, which branch off from the main axial supply vess defined using a new scaling analysis which combines anatomi-
sels, are defined as the muscular branches. These large branchéanalysis, Murray’s law and the assumption of uniform perfu-
run obliquely toward the skin surface and supply the large musd®n. This analysis leads to a generalized anatomic description of
bundles in skeletal muscle. These large bundles are supplieddmth the SAV vessel pair and its tissue cylinder geometry. Second,
the SAV vessel pairs which run along the length of the musclthe boundary value problem for the thermal interaction between
Several hundred small vessel tissue cylinders comprise eaclhe SAV vessels and the tissue cylinder is solved for the two
large muscle bundle. The muscular branches and the SAV vessalscular branching patterns shown in Fig. 2. These branching pat-
decrease in size from approximately 10t diameter and ap- terns, which we describe next, represent two limits of possible
proach 30Qum diameter when they encounter thevessels under thermal interaction between blood vessels and tissue.
normal conditions in a human limb. A single SAV vessel pair
supplies numerou® vessels and thus a multitude efvessel I . .
tissge cylinders, as previously discussed in Weinbaum ¢f.8J. 2 Description of the SAV Tissue Cylinder
The s vessels, thé® vessels, and the SAV vessels form a space- Unlike the vascular arrangements of blood vessels less than 300
filling countercurrent network characteristic of all muscle tissuegm in diameter, which have been studied in detail for different
The temperature distribution in the SAV vessels is mainly denuscle tissues, there is no systematic description in the literature
termined by the thermal interaction between the SAV vessel paif vessel branching patterns for vessels between 300 and4©00
and its surrounding tissue, and by the temperature distributionim diameter. Generally speaking, the branching patterns for the
the muscular branches. Like tBeessels, the SAV vessels are nomuscular branches and SAV vessels in humans and mammals are
perfect countercurrent heat exchangers. If these vessels were ither one or a combination of the two general patterns shown in
ied in infinitely deep tissue all the energy lost from the SAV arterfig. 2. The axial variation of the blood vessel radius and the
would enter the SAV vein. The presence of thermal interactid®AV tissue cylinder radiu®, surrounding the vessels can be de-
between SAV pairs and the free surface can cause an asymmétnynined by introducing flow continuity and several other physi-
of this energy transfer. Some of the thermal energy leaving tlaéogical constraints as follows.
SAV artery does not enter the SAV vein. Because of their large The first pattern(Fig. 2(a)) is called “pure branching.” In this
size, the thermal equilibration in the SAV vessels is at the mogattern one vessel branches to form two equal vessels in each
only partial and the equilibration length will increase at highesuccessive generation and there is no capillary bleedoff from the

122 / Vol. 124, FEBRUARY 2002 Transactions of the ASME



PURE BRANCHING PURE PERFUSION

2= 2
nR?= R RZ=R;

1A, n=1
L jp—— P vesscls
— N~ .
SAV artery or vein SAV artery or vein
s vessels
Rto RIO

@ (b)

Fig. 2 Two vascular branching patterns for the SAV vessel pairs. Note that
either the countercurrent SAV artery or vein is shown.

vessels. This pattern has been observed in skeletal muscle ingketional area, this cross-sectional area is halved each time a ves-
rat[20] and is also prevalent in the first few bifurcations from thael divides as shown in Fig(&. A single vessel in generation 1
main supply vessels in a muscle that does not have an extendélli have its tissue cylinder cross-sectional area first shared by
axial structure. During exercise, the blood flow can be redistrilbwo, then four vessels, and so forth, as it continues to bifurcate.
uted and directly transported to the cutaneous layer without pdthus, an is a constant. Combining the requirememﬁf
fusing the surrounding tissue. The SAV vessels in the pure branchgonstant anahec 1/a2, one finds thaR?>a® and the axial varia-

ing pattern can be viewed as a tapered vessel pair consisting of 3@ of R, can be determined frora. The integrated Eq(1) and
vessel branches from all previous generations which contains GRgge scaling relations require that the vessel ragjusood ve-
branch in each vessel generation. If one assumes that the veﬁﬁg{y u, and tissue cylinder radiug, satisfy

bifurcates into two equal-sized branches, the ratio of the blood

flow rate in the mother vessel to that in the daughter vessel shoulda=1-103/— 5,52+ aj'% u=ug(alag), R=Ry(alay)®?

be a constant based on mass conservation; th@s, &= Q; . 2)
Mathematical rearrangement of this relationship leadQtQ, i

—Q,/L;=—Q;,/L;, whereL, is the length of vessel generationWher_e the subscrlpt 0 represents values at the entrare8)( of

i. If one assumes that the left side of the above relationship cantbg tissue cylinder. o .
approximated aslQ/dz, the above equation can be rewritten as The_sec”ond branching pattern shown in Figy)2s called “pure
dQ/dz=—Q/L,. Combining this relationship with Murray’s law, perfusion.” In this branching pattern t.he SAV vessel tapers as the
Q=a®, one finds that 82(da/dz)=—a%/L,. The vessel length small_er vessels branch from the_ main axial vessel_s. 'I_'hls pattern
L,, in general, decreases with the vessel radiu®revious ex- describes the SAV vessel branching pattern shown in Fig. 1 for the

perimental measurements of the blood vessel lehgtand the long axial muscles in the human limb. The smaller vessels branch-

vessel radiug by Song et al[14] led to an empirical expression, I"d from the SAV vessels are tii¢vessels, which then supply the

L(mm=0 067a1'1°2(,um) for blood vessels less than 20n in subsequens vessel tissue cylinders. In this case there is only one
i =0.

ﬁv vessel pair and the corresponding tissue cylinder surrounding

diameter in skeletal muscle. Here we extrapolate this expressﬁls of uniform radius in the axial direction. Murray’s law requires
to larger blood vessels ranging from 300 to 100 in diameter. that the local blood flow rat&) is proportional to the cube of

Whitmore’s data for a 20 kg do@1] shows that this relationship : 3 . N )
provides a reasonable fit for all vessels up to 1 mm diametdfSSel radiusQea®. If uniform perfusion is assumed in the local

Therefore, substituting; into the above relationship, one obtaind!SSUe cylindeg surrounding the SAV vessels, then one requires
that dQ/dz=R;. Combining the uniform perfusion assumption

da_  a ™% 1) and Murray’s law, one obtains

dz 0.02012 a?(da/dz)«R2. 3)
The axial variation of vessel radius™ can then be determined )
by integrating Eq(1) with an initial radiusa, at z=0. For a long muscle of constant radi&= R, Eq.(3) leads to

Flow continuity requires thatnQ=constant, wheren da/dzca™2. In this case, the axial variations af u, andR; are
=1,2,4,8, etc. is the number of artery-vein pairs in each 3succeéii(-lﬂfeSS@d as
ing generation. When it is combined with Murray’s la@sa®, n Y e~ Y e~ _
will scale asn=1/a%. In the pure branching pattern we require that a=aV1-2/C, u=upV1-2/C, Ri=Rp “)
the total tissue cross-sectional area surrounding all vessels in eaglere C is a constant determined by the vessel length and the
generation remain constant. ThusRf is the local radius of the change in vessel radius betwees0 andz=L which will be
tissue cylinder surrounding a vessel pair ame is its cross- calculated later.
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whereL* is the cylinder lengthad is the vessel radius at*

=0 anda} is the vessel radius at =L*; (v) the velocity field in

the blood vessels can be obtained by solving the Navier-Stokes

equations for an incompressible fluid. Similar to the analysis

given in Part |, one obtains parabolic expressions for the velocity

profile in the axial direction of the vesselsj) axial conduction is

neglected in the vessel region due to the high blood flow rates

[22]. However, axial conduction in the tissue region is considered.

#?T¥19z*2 is approximated by its value on the tissue cylinder

surfaced®T}.../dZ*2; (vii) the temperature gradies®, ,/Jz in

the convective terms of the vessel energy equations can be ap-
> proximated by the axial gradient of the vessel bulk temperatures,

dTap,bn/dz, as previously justified22].

artery vein The nondimensional parameters and variables are defined as
. _s;U . _r;U _aj;v - |* R R*
a, v ’ a ’ a,v " % - % = x>
T T Tw Ta T &
Rt
tissue cylinder R? Cc* z* L*
surface Rt=—*, =— z:a—*, L:a_*'
R 0 0 0 0 @)
Fig. 3 The geometry of the cross-sectional plane and coordi- u;,v b 2piCiagug T;,v,t_T:iocal(Z)
nate system in the tissue cylinder Ua =% = R e TRy
Y Y a0 UE; kf a0 T;bof T:rlocal( L)
TﬁOCal(Z)
. . F(Z) = * _T* (Z) N
3 Mathematic Formulation abo ™ ! tlocal

One tapered countercurrent SAV vessel f&AV vesselsis The dimensionless tissue temperatiizeis defined such that,
considered in each tissue cylinder. The axial variation of the ge-0 at the cylinder surface. All length variables are scaled by the
ometry is determined either by Ed®) or (4). Referring to Fig. 3, vessel radiug} at z* =0. T, is the artery bulk temperature at
the principal simplifying assumptions of the model éjeboth the  z* =0, The tissue temperature on the outer tissue cylinder bound-
flow and temperature fields are steady) the SAV artery and 4y T# s prescribed and need not be constant. The function
vein are located symmetrically in the cross-sectional plane.a'%z) is determined by the prescribett,..,. Employing these

simplify the analysis in the cross-sectional plane, the artery sumptions, one can rewrite the dimensionless energy equations

vein are assumed to be of the same Size, the same blood f%}\fythe blood vessels and the tissue as given in Weinbaum et al.
velocity, and the same vessel eccentricity. Thus, one has [18]

ay=a;=a*(2), ajl;—0=2a;l,-0=a5

1 a( aTayu) 1 #*Ta,

Uz =uy=u*(2), Uuzl,—o=ujl,—0=Ug ®) Fap Iap | e, T2, g2,
sh=sy=s%(2), I3 ,(2)=2s". f 2\ (dTape  dF
Here the subscripts, v refer to the SAV artery and vein, respec- =1 P&Ua,| 1~ ai v dz * dz)’

tively. Asterisks denote dimensional variables or parames&ris

the vessel eccentricity, arldl is the vessel center to center spac- Fap=<2a,(2), zsL )
ing; (iii) the effect of branching from the SAV vessel in FigbR ) .

is treated as a continuous bleedoff from the SAV palirs) We f=1 for artery; f=-—1 for vein

assume that the vessel eccentricity and the vessel center to cen era JT 1 2T d2F(2)

spacing follow the same axial variation as the vessel radius. T _( _‘> t—y—y=———+BP[T w(2)—F(2)]
requirement of uniform perfusion provides a relationship betweelR dR| ~ dR/ = R* 9¢* dz* @ '
ay, L*, andR{y. These assumptions, when combined with Eq. R<R(2), I,,=a,.(2)

(2) and Eq.(4), lead to the following expressions: nen avTTay (10)

BP=0 for pure branching pattern;
pure branching pattern
0.7wprfa;02

a*(z*)=110%—55* +af 12 y*=u*(a*/al), BP= —— —— for pure perfusion pattern
t
* _ D% (ak [a%)3/2
R =Ro(a™/ag) (©) wherew is the local blood perfusion rate due to the bleedoff in the
s*(z¥)=sj(a*/a%), I*(z*)=I5(a*/a}) pure perfusion pattern. The Pennes-like source fer&h on the
right side of Eq.(10) for the pure perfusion pattern takes into
and consideration the net heat release due to countercurrent heat ex-

change in thes vessel tissue cylinder, as described in Part I. The
overall heat released by the bleedoff should be proportional to the

a*=aj} 3a—zFiCc*, u*= ug 31—z*/C*, R*=RY (7) temperature differe_nce betv_vgen the SAV artery and tissue, multi-
plied by a “correction coefficient” to account for the venous re-

pure perfusion pattern

C*=L*/[1-(a%/af)®], s*(z*)=sta*/ag, warming in thes vessel tissue cylinder. 0.7 is an average value of
. .o the correction coefficient calculated by Weinbaum ef 8] for
I*(z¥)=1ga*/ag various muscle tissues.
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The continuity of temperature and heat flux on the vessel SYUM 15,5
faces and the convection boundary condition on the tissue cylin- . i
der surface require that , 1ra 3, 5 Ty
Ug| I " —Uay In—

Taw=Ti, for law™= aa,v(z)

4
Tay T, (11) 2, Ta ., 1, 3,1 (P
= = = — I+ - =+ —
May s , for lav aa’U(Z) u,a, In a, u, Iy 4 8.5 4 a, 4
- - r r,
T,=0, for R=R; 12) u,allin=2 —uzaiin—=
In Eq. (9), T4, andT,, are the artery and vein bulk temperatures, L da A g
respectively. These bulk temperatures are defined as (15)
2 T (A, rgv and T, is the homogeneous solution in the three regidngsis
Tab’“b:waa,v fﬂ,J'o Taol 1- g"v la,0rg,dog . given by
(13) d(TaptF)

The fundamental differences between the boundary value prob- h
lem in the foregoing formulation and that in Part | di¢ axial .
conduction is considered in the tissue regidi) the cross- ) N d(T,p+F)
sectional area of the tissue cylinder, the vessel radius, and the — TUad, P& ~b,o— 2, b,R"cogng) BT
blood flow velocity can change in the axial directidiii;) there is n=t
an axial temperature variation on the tissue cylinder surface; and (16)

(jv) the effect of bl(.)Od .bleedof.f from the SAV ve_ssels on thQ'he solutions for the blood vessels and tissue satisfy the matching
tissue temperature field is described by a Pennes-like source t?f&‘mdary condition&Eq. (11)) on the vessel surfaces. Following a
9%§¥rivation similar to that presented in the Appendix of Wu et al.

value problem in the axial direction without significantly changin L :
the boundary value problem in the cross-sectional plane. The lo 2 ]'bglrjr?d?)r/] sgh\:jeiti?r: ;ge:g?efnmeribgn andb,, by applying

tissue temperature on the outer boundary of the tissue cylinder

T =uua§ PQ){ ba0+2 banR" COS{T‘I((ﬁ—W)]] dz
n=1

Tiiocal(2) is prescribed. This determinéqz). b.o=b,0=bp=—0.25I{R(2)/a(z)] a7
ban=b,n=b,=0.25"(2)/[[nR"(2)], n=123.... (18)
4 Solutions for the Countercurrent Flow The temperature solutions in the artery and vein are used to de-

rmine the bulk temperatur€$,, andT,;,). Substituting the ves-

| temperature expressions into E43) and evaluating the
ouble integrals, one can relate the vessel bulk temperatures to
{peir gradients:

A theoretical solution to the complicated boundary value prokS(-3
lem summarized in Section 3 can be obtained by modifying tH
solution procedure outlined in Wu et &23]. The simplifications
introduced in the governing equations and the boundary con
tions enable us to separate the variables and solve the boundary d(Tapt+F) d(T,p,+F)
value problem in the cross-sectional plane independent of that in Tap=A1r dz +A1z dz
the axial direction. Using this approach, the axial interaction be-

tween vessels is reduced to a coupled system of two ordinary d2F
differential equations for the variation of the axial bulk tempera- +A1g gz TBP(Tap—F) (19)
tures in the SAV vessel pair.
The solutions foiT, , and T, are decomposed into a particular d(TaptF) d(T,p+F)
solution and a homogeneous solution. These solutions which sat- Top=Aar—q; L
isfy Egs.(9)—(10) and matching conditions E@l1) are
d’F
.1 [T, W +A23[W+ BP(Top— F)} (20)
To|=| Tn|[+[MIsx2 d(T,p+F) where the coefficient#\;;_,3; which depend orz and the local
Ty Th 4z vascular geometry, are given by
1] d?F NI I 2
+ i F—(Tab—F)BPH Ap=—Ayp ngo b,s % Pgua
2 la 2 2 2 —_p_2 | 5 1_5_2 +£L
2ajIn| —| +aj+s;—2r,5,c08¢,— Ry =TFe N3 R? 2
a
r o
2a%In| =% | +a%+s2—2r,s, cos$, — R? 1 In(l/a
vila, TvoTv T s A= —An==Peua? >, b,s"cognm)+ (/a)
R2_ th 4 n=0
ua’( [R/a s?
(14) —Pe—— [ In| = ( 1+ —2) 21)
The third matrix on the right side of E(L4) arises from the axial 4 Ri

conduction in the tissue region and the source term. The third A — 22

group of terms in the expressions fb; and T, are harmonic and A13=Azs=0.25R ="+ 0.5).

satisfy the matching conditions on the vessel surfaces, while thet is relatively straightforward to apply the new model. The
third group of terms in the expression foy satisfies the outside original boundary value problem has been reduced to two coupled
boundary condition aR=R;. [M]3, is a 3 by 2 natrix defined first-order ordinary differential Eqg19) and (20) for the vessel

as bulk temperatures. The coefficients(it9) and (20) are given by
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Table 1 Tissue temperature distribution

Temperature Distribution atz*=0 atz*=L*
Arterial temperaturd ™, (z*) model predicted 370
Venous temperaturg*,(z*) model predicted Typ(L)=0.3T4,(0)
ConstantT},..(z*) any value between 30-8€) 30-36°C) 30-36°C)
Linearly decreased;,..(z*) (30—36)z*/L*+36 (°C) 36(°C) 30(°C)
Nonlinearly distributedT,..(z*) (30—36)z*2/L*2+36 (°C) 36(°C) 30°C)

the algebraic expressions in Eq&7), (18), and(21), which de- from a constricted to a fully dilated condition using vasoactive
scribe the thermal interaction in the cross-sectional plane. In pridrugs. Two physiological conditions were consideréd: a nor-
ciple, the axial dependence of the vessel bulk temperatures camia condition:w=3 ml/100 g/min; and2) a hyperemic condition:
obtained once the appropriate boundary conditions in the axia24 ml/100g/min corresponding to drug induced vasodilation.
direction as well as the functioR(z) are specified. One of the L* is the distance over which the SAV vessel pair bifurcates from
boundary conditions is the artery inlet temperaflifg,=37 °C at 1000 to 300um in diameter under normal conditions and was
z=0 and its dimensionless value can be determined accordingclculated from Eq(6). We shall examine how blood temperature
the dimensionless temperature definition, while the other is tlecays in the countercurrent vessel pair over a distande* of
relationship between vessel bulk temperatureg=at which is =12 cm for the two vessel branching patterns shown in Fig. 2.
determined in Part [18]. The difference betweefi%,(L*) and ~ For convenience the dimensionless temperatures in Figs. 4-9
T*,(L*) is equal to 0.6-0.8 timesTXy(L*)— Tk ..(L*). Con- are defined as
verting this relationship into the definitions of the dimensionless

* _ T
variables, one obtaint,,(L)=0.2~0.4T,,(L). In this paper an Tab.ob,t tioca( Z") ~ Thioca L)

> Tabw 7)= : 22
average value of 0.3 is used o (L). ab.ub,t ocaf 2) %0~ Thocal L*) (22)
5 Results Accordingly, the dimensionless arterial temperature=a0 is al-

ways equal to 1. A calculated dimensionless temperature equal to

5.1 Temperature Decay in SAV Vessels for Two Branching zero implies a temperature equal to the surface temperature of the
Patterns. We considered three special cases where constant, lissue cylinder az* =12 cm.
early decreasing or quadratically distributed local tissue tempera+igure 4 shows the dimensionless temperature distributions in
ture distributions are used as the input f6fz) in the model. the SAV artery and vein for the pure branching pattern for both the
These three temperature variations are summarized in Tablendrmal and hyperemic conditions. Note that in this first calcula-
The arterial temperature at the entranth,,, is equal to the body tion the tissue temperature at the cylinder surfagg..(z*) is
core temperaturé87°C). Under hyperemic conditions, which mayuniform in the axial direction. At the end of the cylinder*(
be induced by vasoactive drugs, it is reasonable to assume thatp cm), the arterial blood nearly equilibrates with the local tis-
only small temperature variations exist within the limb and thugue temperature under normal conditidttsin solid line. How-
Tioca(Z*) should be close to the body core temperature. Howeveer, for hyperemic conditions, the dimensionless arterial tem-
large tissue temperature variations may occur under normal physérature decays only 10 percentzit= 12 cm (heavy solid ling.
ological conditions. The tissue temperature is assumed to decre@fi is expected since for hyperemic conditions the blood flow
from 36°C to approximately 30°C as one proceeds from the centége is higher and results in less heat loss from the blood vessels.
of the limb to the periphery. Notice also that the venous rewarming of the blood is smaller for

All the other parameters and thermal properties are taken frafe hyperemic conditions. From an energy balance point of view,
the literature and are listed in Table 2. The blood velocity is priveat lost from the SAV artery by conduction through the artery
portional to the vessel radius as required by Murray’s law. Thgall must enter either the tissue cylinder or its countercurrent
radial size of the tissue cylind&;; was determined by requiring vein. Therefore, the temperature increase in the SAV vein is al-
that the blood perfusion rate in the pure perfusion pattern for teays smaller than the temperature decrease in the SAV artery
normal conditions be equal taw=3 ml/100g/min, i.e., ® unless the tissue cylinder is infinitely large.
= 7ra} °uy/ 7R%?L* . This blood perfusion value is equivalent to For the pure perfusion pattern shown in Fig. 5, the dimension-
0.0005 s if the blood density is equal to 1000 kginPrevious less arterial temperature defined in E?R) decreases to 0.23 and
experimental studies by Song et gl5] suggested an eightfold 0.92 atz*=12cm for normal and hyperthermia conditions, re-
increase in the blood flow rate when the vessel was manipulatggectively. Note thaR{ is axially uniform in the pure perfusion

Table 2 Thermal properties and geometric parameters

Pure Branching Pattern Pure Perfusion Pattern

SAV vessel radiug normal:a* (0)=500.m, a*(L*)=150um

hyperemic:a* (0)=1000um, a*(L*)=300um
SAV vessel length.* 12.cm
Blood perfusion rates normal: 3 ml/100 g/min or 0.0005 &
(for pure branching patteyn hyperemic: 24 ml/100 g/min or 0.004%
Vessel eccentricityy normal: s§ =625um; hyperemicsss =1250um
Blood flow velocity ug normal: u§ =100 mm/s; hyperemiaig =200 mm/s
Tissue cylinder radiugy;, R{,=20.14 mm
ConstantC* (Eq. (7)) C*=123.3mm
Density p; 1000 kg/ni
Specific heaCs 3600 J/kg K
Thermal conductivityk; 0.5 J/mK
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Pure Branching Pattern
Constant Tissue Temperature
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0.2 - —Normal conditons ~———— ——
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— Hyperemic conditions
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Fig. 4 Axial temperature distributions in the SAV artery and vein for the pure
branching pattern under both normal and hyperemic conditions

pattern while it decays in the axial direction in the pure branchirgytery temperature decay, Ti,,(L) is smaller thanTl ;9. This is
pattern. If one compares the results given in Figs. 4 and 5, it cemore pronounced for the hyperemic condition since the bleedoff is
be found that less heat is lost from the SAV artery in the purggnificant.

perfusion pattern and, thus, a smaller temperature decay is obThe effect of the axial tissue temperature variation on the axial
served than that in the pure branching pattern. Another interestiagerial temperature decay is shown in Figs. 6—9. Figure 6 is for
observation from Figs. 4 and 5 is that, unlike the pure branchitige pure branching pattern under normal conditions. Here the
pattern, the temperature increase in the vein in the pure perfusmmves represent three tissue temperature profiles. The heavy solid
pattern can be either larger or smaller than the temperature tire is for a uniformT,c, @ linearly decreasin@y .4 is denoted
crease in the artery depending on the blood perfusion rate. Tie the thin solid line, while a nonlinearly distribut€fi ., IS
fundamental difference between the two branching patterns is tlepresented by the dashed line. For the normal condition, the axial
bleedoff from the SAV vessels in the pure perfusion pattern. Thissue temperature variation has a modest effect on the arterial
total energy lost in the arterial side is not directly proportional teemperature profile; while its effect is smaller for the total heat
the temperature difference between two axial locations. Enerfpss from the artery for the pure branching patterrxatL. In
leaving the SAV artery consists of both the conduction loss frogontrast, for hyperemic conditions shown in Fig. 7, the arterial
its surface and the advection due to the bleed off. Both conductitemperature profiles vary little<5 percent with the tissue tem-
and advection contribute to the rewarming of the countercurrepérature variation. Similar conclusions can be drawn for the pure
SAV vein. The venous temperature increase can be larger than pleefusion patterriFigs. 8 and @ Variations in the temperature at

Pure Perfusion Pattern
Constant Tissue Temperature

Tab and Tvb

- — Normal conditions

Dimensionless Temperatures

-— Hyperemic conditions

0.0 T T T T T
0 20 40 60 80 100 120

Axial Distance z* (mm)

Fig. 5 Axial temperature distributions in the SAV artery and vein for the pure
perfusion pattern under both normal and hyperemic conditions
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Pure Branching Pattern, Normal
Effect of Tissue Temperature on T,

constant
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------ non-linear
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Fig. 6 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under normal conditions for the pure
branching pattern

the tissue cylinder surface result in less than 10 percent anc&ed to the smaller downstreagnvessels. Table 3 summarizes
percent changes in the arterial temperaturg*at 12 cm for this the percentage of heat released in the SAV vessels to the total
pattern under normal and hyperemic conditions, respectively. vessel-tissue heat exchange. One observes that for hyperemic con-

The present model for the SAV vessels makes it possible {@ions, far less heat is released in the SAV vessels than in the
evaluate the contribution of various size vessels to the total bloags,5jier downstrears vessels and their subsequent branches. Un-
tissue heat exchange under different physiological conditions. F

the pure branching pattern, the total heat released from the blo(géJ normal conditions, more than 48 percent of the total heat

vessels to the tissue is proportional to the temperature differenef:ig:hange oceurs 1n the region containing large SAV vessel_s for
betweenT,, and T,, at the SAV vessel entrance. Similarly, thetl€® Pure branching pattern. However, less than 10 percent is re-
heat released from the vessels to the tissue is proportional tdeased in the SAV vessels for the assumed hyperemic conditions.
Tan— T,b at the SAV vessel exit. The percentage of heat releaséfe local tissue temperature variation does affect the contribution
from the blood vessels prior to thevessels is represented by 1of different sized vessels to the total blood-tissue heat exchange.
—[Tr(L*)=TH,(L*)J/[T,(0)—Tx,(0)]. The larger this value, lts effectis more pronounced for the normal condition than for the

the greater the fractional heat release by the SAV vessels comyperemic condition.

Pure Branching Pattern, Hyperemic
Effect of Tissue Temperature on T,,

S
~

Tab and Ttlocal

Dimensionless Temperatures

constant
02+ linear - - - - - Z ":"’?..— -7
. Ttlocal R
------ non-linear
0.0
-0.2 T T T T T
0 20 40 60 80 100 120

Axial distance z* (mm)
Fig. 7 Effect of the temperature variation at the tissue cylinder surface on the

temperature decay in the SAV artery under hyperemic conditions for the pure
branching pattern
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Effect of Tissue Temperature on T,
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Fig. 8 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under normal conditions for the pure per-
fursion pattern

5.2 Temperature Decay in the SAV Vessels in Human The temperature variation in the muscular branches from the ma-
Limb. Based on results obtained in Section 5.1 for the two linjer supply artery and vein for the limb is assumed to be small
iting vessel branching patterns, we shall now consider the tewempared to that in the SAV vessels. This assumption is due to the
perature decay in the SAV vessels of a human limb. Unfortunatelsyge size of the muscular branches and is based on our calculation
no detailed anatomic data are available for blood vessels largeiSection 5.1 where less than 10 percent of the temperature decay
than 300um diameter in the human limb, equivalent to the Myraeccurs in vessels between 1000 and §@® in diameter. The
hage and Eriksson data for tisevessel tissue cylinder in Part | temperature at the SAV tissue cylinder surface is assumed to be
[18]. We assume that for the blood vessels to be space filling, theiform since it is parallel to the skin surface. Thus, in this sec-
vascular structure reproduces itself on a larger scale. As sketchiet, the temperature decay in the SAV vessels is determined from
in Fig. 1, the SAV vessels bifurcate from the large musculdhe thermal interaction between a tapered vessel pair with uniform
branches and then run roughly parallel to the skin surface. Eaaleed off, and a uniform radius tissue cylinder with constant sur-
SAV vessel pair supplies a large tissue cylinder of uniform radiuiace temperature.
via severalP vessels and their subsequentessels and vessels. Several parameters such as the tissue cylinder radius, SAV ves-

Pure Perfusion Pattern, Hyperemic
Effect of Tissue Temperature on T,,
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0.8 — e
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Fig. 9 Effect of the temperature variation at the tissue cylinder surface on the

temperature decay in the SAV artery under hyperemic conditions for the pure
perfusion pattern
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Table 3 Percentage of total heat loss prior to the s vessels  determined by requiring the average blood perfusion rate be equal
to 3 ml/100g/min under normal conditions. This will lead Rg,

Linearly —14.6 mm
Uniform  Decreased Nonlinear ’ - -
Tiow Tiow Tyocal Another parameter that needs to be determined is the SAV ves-
Conditions Pattern (percent  (precert  (precery  Sel size at the midpoint of the tissue cylinder where two SAV
. vessel pairs running in opposite directions meet. Myrahage and
Normal pure branching 83.8 64.8 48.5

Eriksson[19] observed that the average distance between any two
Hyperemic  pure branching 9.0 4.1 2o adjacentP vessels is about 12 mm; thus, there are an average of
13 (16 cm/12 mm P vessels between major muscular branches.
The blood flow rate in the centr&éd vessel at the midpoint of the
SAV tissue cylinder should be equal @, the blood flow rate in

sel size at the entrance and exit, and the tissue cylinder length, @ SAV at the juncture of the two SAV vessel pairs. If one as-
needed to simulate the temperature field. In Myrahage and Erilsimes that all the vessels have the same blood supply, the blood
son’s[19] description of thes vessel tissue cylinder, many muscleSUPPly in eachP vessel will be 1/13 of the blood supply to the
fibers (100 or mor¢ supplied by thet vessels combine to create SAV artery at its entrance. Using Murray’s law, one finds that the
ones vessel tissue cylinder. In the same manner, we propose tR40d velocityu is proportional to the vessel radius. This requires
manys vessel tissue cylinders combine to provide a larger tissifgat the SAV vessels be approximately 3@ in diameter at the
cylinder supplied by the SAV vessel pair. The SAV vessels pl d of the Iarg_e tissue cylinder. Under hyperemlc conditions the
the same role as thevessels in our smallesvessel tissue cylin- SAV vessels will dilate 100 percent to achieve a local blood per-
der except that they are one order of magnitude larger. Similarfiision rate of 24 ml/100g/min. Table 4 lists all the estimated
the P vessels are equivalent to thevessels except that thie —Parameters. o

vessels are one order of magnitude larger. The average radii of th&igures 10 and 11 show model predictions for the temperature
P andt vessels in the different muscle tissues listed in Table 1 fcay along the SAV artery and vein, respectively, in a human
Part I[18] are 110um and 12um, respectively. Applying a simi- I|r_n_b for different bIood_ perfusion rates ranging from normal con-
lar scaling law, one finds that the SAV vessel at its entrance §ions of 3 ml/100g/min to hyperemic conditions of 24 mi/100g/
approximately 350um in radius if thes vessel radius has an Min. Itis s_hown that up to 90 percent thermal equilibration can_be
average value of 3gm. The SAV tissue cylinder length is half @chieved in SAV arterial blood depending on the blood perfusion
the distance between any two adjacent large muscular brancHaie- The SAV artery has a longer thermal equilibration length
Gray’s anatomy text indicates that there are typically three or folhen the blood flow is higher and only 20 percent thermal equili-
large muscular branches in the human upper I[2). The dis- bration is reached under hyperemic conditions of 24 ml/100g/min.
tance between any two adjacent muscular branches will be A@_(_:ontrast to the arterial temperature d_ecay, the local blood per-
proximately 16 cm if the length of the upper limb is 48 cm. Thdusion rate seems to play a minor role in the venous return tem-
blood flow in the SAV artery supplies a tissue cylinder 8 cm iperature since the dimensionless venous return temperature in the
length. The total blood flow rat€ in the SAV artery is then SAV vein is ~0.4 independent ofs, as shown in Fig. 11. The

calculated as 1.61 ml/min. Thus, the tissue cylinder radius can H@del predicts that in the human limb, 40 percent of the heat
released from the artery is recaptured by its countercurrent SAV

vein. The independence of the venous return on the blood perfu-
Table 4 Vascular parameters and blood flow in human limb sion rate is similar to that found for treevessel tissue cylinder in
part 1[18], and will be discussed more fully in the next section.

aé‘ a: R;k Cc* L* QO (0]
(um) (um) (mm) (mm) (mm) (ml/min) (ml/200g/min . .
6 Discussion
Normal 350 150 146 86.8 80 1.61 3 . . .
Hyperemic 700 300 14.6 86.8 80 12.9 24 In this study a vascular model is developed to simulate the
thermal equilibration in the SAV artery and vein. It is shown that

SAV Artery Temperature Distribution in Human Limb
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Fig. 10 Temperature decay in the SAV artery in a human limb
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SAV Vein Temperature Distribution in Human Limb
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Fig. 11 Temperature decay in the SAV vein in a human limb

both the vessel branching pattern and the physiological conditiomsthe entrance temperature for thevessel tissue cylinder that
are the main factors affecting the temperature decay in the Sappears in the new modified source term in Part | of this study,
vessels. Under normal or hyperemic conditions without externd@s calculated for two vascular branching patterns. These patterns
heating, the local tissue temperature variation seems to playepresent two limits of possible thermal interaction between SAV

; - . : lood vessels and tissue. Thus, these two cases provide the rea-
minor role in determining the temperature decay in the SAV ar oo range of temperature variation along the SAV artery that

tery. The current r'esults provide two “.m'ts for the_ possible te one would anticipate for different physiological conditions. It is
perature variation in the SAV artery. T_hl_s SAV a}rterle_ll temperatui@ nd that for both vessel branching patterns, at least 77 percent
decay, as well as the correction coefficient defined in Part | of thig the thermal equilibration is achieved in the SAV artery before it
study, can be used in the modified perfusion source term to maeters thes vessel tissue cylinder for normal physiological condi-
accurately estimate the net heat release from the countercsrretions. However, for hyperemic conditions most of the heat transfer
vessel pair in the tissue cylinder. One of the shortcomings of alfrom the countercurrent blood vessels to the local tissue occurs in
the continuum models is that they are incapable of accuratdije tissue region containing smaller blood vessels. There is a

redicting point-to-point temperature variation in the vicinity ofmaller temperature variation in the SAV arterial blood compared
p gp p P y |?}_that under normal conditions. The dimensionless arterial tem-

large blood vessels. This study shows that for hyperemic con ; - i
tions encountered in hyperthermia it is a reasonable assumptio ﬁature in the SAV vessels is almost a constant for both branch

use the body core temperature as the arterial inlet temperaturg,Btature appearing in the modified source term can be treated as a
the modified perfusion source term for theessel tissue cylinder. constant whose value is close to the body core temperature as
The lack of thermal equilibration will create large tissue temperaoted earlier.

ture gradients in the vicinity of 3001000 um diameter vessels. The heat exchange between countercurrent microvascular
The search for a suitable energy equation that accurately egtery-vein pairs has attracted widespread attention since the com-
flects the heat released or removed by the blood has been a certirméd theoretical and experimental studies by the auff&jrrst
theme in bioheat transfer research for nearly half a century. Theggested that this might be the dominant heat transfer mecha-
individual s vessel muscle tissue cylinder defined in the anatomiism in local microvascular blood-tissue heat transfer. The
cal studies of Myrhage and Erikssph9] is the largest repetitive Weinbaum-Jiji bioheat transfer equati@6] was developed based
unit that is common to nearly all muscle tissue whether the tissoa the incomplete countercurrent exchange that took place be-
is deep or peripheral. This suggested that a single bioheat transfegen the paired vessels. However, subsequent st{ithes5,27
equation could be derived and applied to all muscle tissue whishowed that the limit for the validity of the expression for the
was based on this anatomical unit. In Part | of this study, a modiffective conductivity describing these vessels was limited to ves-
fied Pennes source term was derived in which a correction coeél pairs of<200 um diameter. The current study can predict
ficient was defined to account for the heat loss recaptured by twdal temperature distributions in countercurrent vessel pairs rang-
countercurrens vein. Roemer and Duttdr25] have also proposed ing from 300 to 100Qum in diameter and is also able to evaluate
a modified Pennes-like perfusion term based on a generic tisshe deviation of the thermal interaction from perfect countercur-
model for convective energy exchange. Although it is nontissuent heat exchange. The model predicts that for a human limb 40
specific, the correction coefficient is rather complicated and hapércent of the heat lost from the SAV arteries and their branches is
to evaluate. This coefficient depends on the total heat transfecaptured by their countercurrent vein. The thermal interaction
coefficients between tissue and blood in artery and vein, respéetween the SAV vessels is thus, far from being perfect counter-
tively, which vary from generation to generation with the flowcurrent heat exchange. We also observe that for these larger ther-
The correction coefficient also depends on the local venous retunmally significant vessels the gradient of the mean tissue tempera-
and the thermally significant arteries and veins. In comparison, thee does not follow the gradient of the mean blood temperature.
model developed in this study gives a simple correction coeffFhis simulation confirms the conclusion of our experimental stud-
cient for the Pennes source term, which ranges from 0.6 to 0.8 fes[15,27] that the Weinbaum-Jiji equation breaks down in tissue
muscle tissues. This correction is much easier to apply in practicegions with blood vessels200 um diameter.
In the present paper the temperature distribution in the SAV artery,The 40 percent venous rewarming in a human limb is a com-

patterns during hyperemia. Thus, for this case the arterial tem-
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bined venous rewarming that includes both the SAV anéssel

tissue cylinders, since the thermal interaction inglvessel tissue
cylinder was included in the boundary condition appliedxat
=L, the end of the SAV vessel tissue cylinder. The fact that the

venous return temperature does not depend @ not a surpris-
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