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A New Fundamental Bioheat
Equation for Muscle Tissue—Part
II: Temperature of SAV Vessels
In this study, a new theoretical framework was developed to investigate temper
variations along countercurrent SAV blood vessels from 300 to 1000mm diameter in
skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbau
bioheat equation and, heretofore, have been treated using discrete numerical meth
new tissue cylinder surrounding these vessel pairs is defined based on vascular an
Murray’s law, and the assumption of uniform perfusion. The thermal interaction betw
the blood vessel pair and surrounding tissue is investigated for two vascular branc
patterns, pure branching and pure perfusion. It is shown that temperature variat
along these large vessel pairs strongly depend on the branching pattern and the
blood perfusion rate. The arterial supply temperature in different vessel generations
evaluated to estimate the arterial inlet temperature in the modified perfusion source
for the s vessels in Part I of this study. In addition, results from the current rese
enable one to explore the relative contribution of the SAV vessels and the s vessels
overall thermal equilibration between blood and tissue.@DOI: 10.1115/1.1431263#
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1 Introduction
Several bioheat transfer models are currently used to exam

the effect of microvascular blood flow and/or vascular geome
on the local heat transfer@1–3#. These continuum models collec
tively describe the temperature distribution over a representa
control volume, whose size is much larger than the scale of
thermally significant blood vessels and much smaller than
scale of the whole tissue. Due to the large range in size of
thermally significant vessels, it is difficult to define such a cont
volume. The regions of validity of these continuum models ha
been extensively discussed and clarified in the past@4–12#. Fur-
ther, in applications where point to point temperature nonuni
mities are required near discrete large vessels, vascular mode
necessary to accurately predict the tissue temperature field
expected, Crezee and Lagendijk@13# have found that blood flow
in large, thermally unequilibrated vessels is the main cause
temperature inhomogeneity during hyperthermia treatment.

In this paper, we will examine the thermal equilibration
blood in vessels between 300mm and 1000mm in diameter to
determine their contribution to the total blood-tissue heat
change. Lemons et al.@9# have shown that vessels in this siz
range occur nearly exclusively as countercurrent pairs in ske
muscle and have a thermal signature indicating that they und
partial thermal equilibration with the surrounding tissue. The
countercurrent vessels are often referred to as supply artery-
pairs or SAV vessels in muscle tissue. They lie outside the ra
of validity of the Weinbaum-Jiji equation, which experiments a
theory @14,15# have demonstrated, is limited to countercurre
vessel pairs of,200 mm diameter. At present, there is no a
equate theory for describing the thermal contribution of th
large blood vessels, and they are too numerous to be individu
treated in numerical simulations. This paper is Part II of a tw
part investigation in which a new basic model is developed
blood-tissue heat transfer in skeletal muscle tissue. Part I
confined tos vessel tissue cylinders and vessels less than 300mm
diameter.

It is well known that the Pennes perfusion source term ove
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timates the actual blood perfusion effect in tissue in two wa
First, it considers that all the heat leaving the artery is absorbe
the local tissue and there is no venous rewarming. It has b
suggested by previous researchers@16,17# that a ‘‘correction co-
efficient’’ which is less than unity and accounts for venous
warming should multiply the Pennes perfusion term. A correct
coefficient which is close to zero implies a significant counterc
rent rewarming of the paired vein and a coefficient of unity
rewarming. In Part I of this study@18#, a new model for muscle
tissue heat transfer was developed using Myrhage and Erikss
description@19# of a muscle tissue cylinder surrounding counte
current secondary vessels~s vessels! as the basic heat transfe
unit. The thermal equilibration of the returning blood in thes vein
was rigorously analyzed to determine the venous return temp
ture in the tissue cylinder. This led to a modified Pennes bioh
equation with a new perfusion source term, which can be use
predict average tissue temperature distribution in muscle tis
regions containing vessels less than 300mm in diameter. It has
been shown that for most muscle tissues, the ‘‘correction coe
cient’’ varies between 0.6 to 0.8 suggesting that there is 20 per
to 40 percent venous rewarming in thes vessel-tissue cylinder. A
second limitation of the Pennes perfusion source term is that
arterial temperature is assumed to be equal to the body core
perature. Based on the analysis in Part I this arterial tempera
should be the local SAV artery temperature at the inlet of ths
vessel tissue cylinder. SAV vessels of 1000 to 300mm diameter
achieve only partial thermal equilibration with the surroundi
tissue which is then completed when the blood enters thes vessel
tissue cylinders. It is, thus, necessary to study the thermal eq
bration along these partially equilibrated larger blood vessels if
wish to determine the relative importance of the SAV vessels
the s vessels in the overall heat exchange.

As sketched in Fig. 1, thes vessel tissue cylinder is supplied b
the P vessels which branch off from the SAV vessel pairs. TheP
vessels are relatively short and thus, the local arterial inlet te
perature appearing in the modified Pennes source term is
approximated by the local arterial temperature in the SAV ves
pair. This temperature depends not only on the interaction
tween the countercurrent SAV vessels but also on the local tis
temperature distribution. The SAV vessels bifurcate from the m
jor branching arteries that emanate from the central supply ves
that run along the axis of the limb. A central question in analyz

-
itor:
002 by ASME FEBRUARY 2002, Vol. 124 Õ 121
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Fig. 1 Proposed vasculature showing the relationship between the muscular arter-
ies, the SAV tissue cylinder, and the s tissue cylinder in a human limb
m

r

e

a

e
n
s
d
c
c
s

a

c
e
d
p
n
o

i

r

this
for
that

u-
al

im-

ntinu-

us
eep
ing
oce-
pair
mi-

fu-
n of
nd,

een
wo
pat-

ible

300
nt
ture

the
s are
n in

e-
si-

each
the
the countercurrent equilibration in the SAV vessels is to determ
how much thermal energy leaving the artery returns to the co
tercurrent vein and how much is lost to the surrounding tiss
This redistribution of energy is a function of the local tissue te
perature distribution and the vascular geometry. The anato
structure of the microvascular bed in thes vessel tissue cylinde
and our modified Pennes equation were presented in Part I of
study. In Part II we primarily focus on the SAV vessel pairs.

Anatomically, theP, s, andt vessels are the first three branch
of the final generations of a branching network that was initia
described in peripheral muscle tissue in Weinbaum et al.@3#. This
network is part of a space filling structure for all muscle tissue
typical circulatory system in a human limb is fed mainly by one
two major pairs of countercurrent arteries and veins that run
ally along the limb. As schematically illustrated in Fig. 1, th
blood vessels, which branch off from the main axial supply v
sels, are defined as the muscular branches. These large bra
run obliquely toward the skin surface and supply the large mu
bundles in skeletal muscle. These large bundles are supplie
the SAV vessel pairs which run along the length of the mus
Several hundred smalls vessel tissue cylinders comprise ea
large muscle bundle. The muscular branches and the SAV ve
decrease in size from approximately 1000mm diameter and ap-
proach 300mm diameter when they encounter theP vessels under
normal conditions in a human limb. A single SAV vessel p
supplies numerousP vessels and thus a multitude ofs vessel
tissue cylinders, as previously discussed in Weinbaum et al.@18#.
The s vessels, theP vessels, and the SAV vessels form a spa
filling countercurrent network characteristic of all muscle tissu

The temperature distribution in the SAV vessels is mainly
termined by the thermal interaction between the SAV vessel
and its surrounding tissue, and by the temperature distributio
the muscular branches. Like thes vessels, the SAV vessels are n
perfect countercurrent heat exchangers. If these vessels were
ied in infinitely deep tissue all the energy lost from the SAV arte
would enter the SAV vein. The presence of thermal interact
between SAV pairs and the free surface can cause an asymm
of this energy transfer. Some of the thermal energy leaving
SAV artery does not enter the SAV vein. Because of their la
size, the thermal equilibration in the SAV vessels is at the m
only partial and the equilibration length will increase at high
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flow rates in an exercising muscle. We intend to characterize
equilibration for the first time and obtain realistic estimates
Tab as a function of branching distance from the axial vessels
run along the length of the limb.

Strictly speaking, an investigation of the temperature distrib
tion in the SAV vessels requires the knowledge of the therm
interaction between all the blood vessels and tissue, which is
practical. In this paper, contributions of theP vessels and theirs
vessel branches to the total heat exchange are treated as a co
ous bleed-off from the SAV vessel pair~see Fig. 1!. The spacing
of the large SAV vessels was never fully described in previo
investigations that attempted to develop a model for the d
muscle tissue of the limb. Our solution approach for determin
the temperature decay in the SAV vessel pair is a two-step pr
dure. First, a large tissue cylinder surrounding the SAV vessel
is defined using a new scaling analysis which combines anato
cal analysis, Murray’s law and the assumption of uniform per
sion. This analysis leads to a generalized anatomic descriptio
both the SAV vessel pair and its tissue cylinder geometry. Seco
the boundary value problem for the thermal interaction betw
the SAV vessels and the tissue cylinder is solved for the t
vascular branching patterns shown in Fig. 2. These branching
terns, which we describe next, represent two limits of poss
thermal interaction between blood vessels and tissue.

2 Description of the SAV Tissue Cylinder
Unlike the vascular arrangements of blood vessels less than

mm in diameter, which have been studied in detail for differe
muscle tissues, there is no systematic description in the litera
of vessel branching patterns for vessels between 300 and 1000mm
in diameter. Generally speaking, the branching patterns for
muscular branches and SAV vessels in humans and mammal
either one or a combination of the two general patterns show
Fig. 2. The axial variation of the blood vessel radius ‘‘a’’ and the
SAV tissue cylinder radiusRt surrounding the vessels can be d
termined by introducing flow continuity and several other phy
ological constraints as follows.

The first pattern~Fig. 2~a!! is called ‘‘pure branching.’’ In this
pattern one vessel branches to form two equal vessels in
successive generation and there is no capillary bleedoff from
Transactions of the ASME
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Fig. 2 Two vascular branching patterns for the SAV vessel pairs. Note that
either the countercurrent SAV artery or vein is shown.
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vessels. This pattern has been observed in skeletal muscle i
rat @20# and is also prevalent in the first few bifurcations from t
main supply vessels in a muscle that does not have an exte
axial structure. During exercise, the blood flow can be redist
uted and directly transported to the cutaneous layer without
fusing the surrounding tissue. The SAV vessels in the pure bra
ing pattern can be viewed as a tapered vessel pair consisting o
vessel branches from all previous generations which contains
branch in each vessel generation. If one assumes that the v
bifurcates into two equal-sized branches, the ratio of the bl
flow rate in the mother vessel to that in the daughter vessel sh
be a constant based on mass conservation; thus, 2Qi 115Qi .
Mathematical rearrangement of this relationship leads toQi 11
2Qi /Li52Qi 11 /Li , whereLi is the length of vessel generatio
i. If one assumes that the left side of the above relationship ca
approximated asdQ/dz, the above equation can be rewritten
dQ/dz52Q/Li . Combining this relationship with Murray’s law
Q}a3, one finds that 3a2(da/dz)52a3/Li . The vessel length
Li , in general, decreases with the vessel radiusa. Previous ex-
perimental measurements of the blood vessel lengthLi and the
vessel radiusa by Song et al.@14# led to an empirical expression
Li(mm)50.067a1.102(mm) for blood vessels less than 200mm in
diameter in skeletal muscle. Here we extrapolate this expres
to larger blood vessels ranging from 300 to 1000mm in diameter.
Whitmore’s data for a 20 kg dog@21# shows that this relationship
provides a reasonable fit for all vessels up to 1 mm diame
Therefore, substitutingLi into the above relationship, one obtain

da

dz
52

a20.102

0.02012
. (1)

The axial variation of vessel radius ‘‘a’’ can then be determined
by integrating Eq.~1! with an initial radiusa0 at z50.

Flow continuity requires that nQ5constant, where n
51,2,4,8, etc. is the number of artery-vein pairs in each succe
ing generation. When it is combined with Murray’s law,Q}a3, n
will scale asn}1/a3. In the pure branching pattern we require th
the total tissue cross-sectional area surrounding all vessels in
generation remain constant. Thus, ifRt is the local radius of the
tissue cylinder surrounding a vessel pair andpRt

2 is its cross-
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sectional area, this cross-sectional area is halved each time a
sel divides as shown in Fig. 2~a!. A single vessel in generation 1
will have its tissue cylinder cross-sectional area first shared
two, then four vessels, and so forth, as it continues to bifurc
Thus, nRt

2 is a constant. Combining the requirementsnRt
2

5constant andn}1/a3, one finds thatRt
2}a3 and the axial varia-

tion of Rt can be determined froma. The integrated Eq.~1! and
these scaling relations require that the vessel radiusa, blood ve-
locity u, and tissue cylinder radiusRt satisfy

a51.102A25.5z1a0
1.102, u5u0~a/a0! , Rt5Rt0~a/a0!3/2

(2)

where the subscript 0 represents values at the entrance (z50) of
the tissue cylinder.

The second branching pattern shown in Fig. 2~b! is called ‘‘pure
perfusion.’’ In this branching pattern the SAV vessel tapers as
smaller vessels branch from the main axial vessels. This pat
describes the SAV vessel branching pattern shown in Fig. 1 for
long axial muscles in the human limb. The smaller vessels bran
ing from the SAV vessels are theP vessels, which then supply th
subsequents vessel tissue cylinders. In this case there is only o
SAV vessel pair and the corresponding tissue cylinder surround
it is of uniform radius in the axial direction. Murray’s law require
that the local blood flow rateQ is proportional to the cube o
vessel radius,Q}a3. If uniform perfusion is assumed in the loca
tissue cylinder surrounding the SAV vessels, then one requ
that dQ/dz}Rt

2. Combining the uniform perfusion assumptio
and Murray’s law, one obtains

a2~da/dz!}Rt
2. (3)

For a long muscle of constant radius,Rt5Rt0 , Eq. ~3! leads to
da/dz}a22. In this case, the axial variations ofa, u, andRt are
expressed as

a5a0A3 12z/C, u5u0A3 12z/C, Rt5Rt0 (4)

where C is a constant determined by the vessel length and
change in vessel radius betweenz50 and z5L which will be
calculated later.
FEBRUARY 2002, Vol. 124 Õ 123
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3 Mathematic Formulation
One tapered countercurrent SAV vessel pair~SAV vessels! is

considered in each tissue cylinder. The axial variation of the
ometry is determined either by Eqs.~2! or ~4!. Referring to Fig. 3,
the principal simplifying assumptions of the model are~i! both the
flow and temperature fields are steady;~ii ! the SAV artery and
vein are located symmetrically in the cross-sectional plane.
simplify the analysis in the cross-sectional plane, the artery
vein are assumed to be of the same size, the same blood
velocity, and the same vessel eccentricity. Thus, one has

aa* 5av* 5a* ~z!, aa* uz505av* uz505a0*

ua* 5uv* 5u* ~z!, ua* uz505uv* uz505u0* (5)

sa* 5sv* 5s* ~z!, l a2v* ~z!52s* .

Here the subscriptsa, v refer to the SAV artery and vein, respec
tively. Asterisks denote dimensional variables or parameters.s* is
the vessel eccentricity, andl * is the vessel center to center spa
ing; ~iii ! the effect of branching from the SAV vessel in Fig. 2~b!
is treated as a continuous bleedoff from the SAV pairs;~iv! We
assume that the vessel eccentricity and the vessel center to c
spacing follow the same axial variation as the vessel radius.
requirement of uniform perfusion provides a relationship betwe
a0* , L* , andRt0* . These assumptions, when combined with E
~2! and Eq.~4!, lead to the following expressions:

pure branching pattern

a* ~z* !51.102A25.5z* 1a0*
1.102, u* 5u0* ~a* /a0* !,

Rt* 5Rt0* ~a* /a0* !3/2 (6)

s* ~z* !5s0* ~a* /a0* !, l * ~z* !5 l 0* ~a* /a0* !

and

pure perfusion pattern

a* 5a0* A3 12z* /C* , u* 5u0* A3 12z* /C* , Rt* 5Rt0* (7)

C* 5L* /@12~ae* /a0* !3#, s* ~z* !5s0* a* /a0* ,

l * ~z* !5 l 0* a* /a0*

Fig. 3 The geometry of the cross-sectional plane and coordi-
nate system in the tissue cylinder
124 Õ Vol. 124, FEBRUARY 2002
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where L* is the cylinder length,a0* is the vessel radius atz*
50 andae* is the vessel radius atz* 5L* ; ~v! the velocity field in
the blood vessels can be obtained by solving the Navier-Sto
equations for an incompressible fluid. Similar to the analy
given in Part I, one obtains parabolic expressions for the velo
profile in the axial direction of the vessels;~vi! axial conduction is
neglected in the vessel region due to the high blood flow ra
@22#. However, axial conduction in the tissue region is consider
]2Tt* /]z* 2 is approximated by its value on the tissue cylind
surface,d2Tt local* /dz* 2; ~vii ! the temperature gradient]Ta,v /]z in
the convective terms of the vessel energy equations can be
proximated by the axial gradient of the vessel bulk temperatu
dTab,vb /dz, as previously justified@22#.

The nondimensional parameters and variables are defined

sa,v5
sa,v*

a0*
, r a,v5

r a,v*

a0*
, aa,v5

aa,v*

a0*
, l 5

l *

a0*
, R5

R*

a0*
,

Rt5
Rt*

a0*
, C5

C*

a0*
, z5

z*

a0*
, L5

L*

a0*
,

(8)

ua,v5
ua,v*

u0*
, Pe05

2r fCfa0* u0*

kf
, Ta,v,t5

Ta,v,t* 2Tt local* ~z!

Tab0* 2Tt local* ~L !
,

F~z!5
Tt local* ~z!

Tab0* 2Tt local* ~z!
.

The dimensionless tissue temperatureTt is defined such thatTt
50 at the cylinder surface. All length variables are scaled by
vessel radiusa0* at z* 50. Tab0* is the artery bulk temperature a
z* 50. The tissue temperature on the outer tissue cylinder bou
ary Tt local* is prescribed and need not be constant. The funct
F(z) is determined by the prescribedTt local* . Employing these
assumptions, one can rewrite the dimensionless energy equa
for the blood vessels and the tissue as given in Weinbaum e
@18#

1

r a,v

]

]r a,v
S r a,v

]Ta,v

]r a,v
D1

1

r a,v
2

]2Ta,v

]fa,v
2

5 f Pe0ua,vS 12
r a,v

2

aa,v
2 D S dTab,vb

dz
1

dF

dzD ,

r a,v<aa,v~z!, z<L
(9)

f 51 for artery; f 521 for vein

1

R

]

]R S R
]Tt

]R D1
1

R2

]2Tt

]f2 52
d2F~z!

dz2 1BP@Tab~z!2F~z!#,

R<Rt~z!, r a,v>aa,v~z!
(10)

BP50 for pure branching pattern;

BP5
0.7vr fCfaa0*

2

kt
for pure perfusion pattern

wherev is the local blood perfusion rate due to the bleedoff in t
pure perfusion pattern. The Pennes-like source term@18# on the
right side of Eq.~10! for the pure perfusion pattern takes in
consideration the net heat release due to countercurrent hea
change in thes vessel tissue cylinder, as described in Part I. T
overall heat released by the bleedoff should be proportional to
temperature difference between the SAV artery and tissue, m
plied by a ‘‘correction coefficient’’ to account for the venous r
warming in thes vessel tissue cylinder. 0.7 is an average value
the correction coefficient calculated by Weinbaum et al.@18# for
various muscle tissues.
Transactions of the ASME
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The continuity of temperature and heat flux on the vessel
faces and the convection boundary condition on the tissue cy
der surface require that

H Ta,v5Tt , for r a,v5aa,v~z!

]Ta,v

]r a,v
5

]Tt

]r a,v
, for r a,v5aa,v~z!

(11)

Tt50, for R5Rt (12)

In Eq. ~9!, Tab andTvb are the artery and vein bulk temperature
respectively. These bulk temperatures are defined as

Tab,vb5
2

paa,v
E

2p

p E
0

aa,v

Ta,vS 12
r a,v

2

aa,v
2 D r a,vdra,vdfa,v .

(13)

The fundamental differences between the boundary value p
lem in the foregoing formulation and that in Part I are~i! axial
conduction is considered in the tissue region;~ii ! the cross-
sectional area of the tissue cylinder, the vessel radius, and
blood flow velocity can change in the axial direction;~iii ! there is
an axial temperature variation on the tissue cylinder surface;
~iv! the effect of blood bleedoff from the SAV vessels on t
tissue temperature field is described by a Pennes-like source
developed in Part I. These will substantially change the bound
value problem in the axial direction without significantly changi
the boundary value problem in the cross-sectional plane. The l
tissue temperature on the outer boundary of the tissue cylin
Tt local* (z) is prescribed. This determinesF(z).

4 Solutions for the Countercurrent Flow
A theoretical solution to the complicated boundary value pr

lem summarized in Section 3 can be obtained by modifying
solution procedure outlined in Wu et al.@23#. The simplifications
introduced in the governing equations and the boundary co
tions enable us to separate the variables and solve the boun
value problem in the cross-sectional plane independent of tha
the axial direction. Using this approach, the axial interaction
tween vessels is reduced to a coupled system of two ordin
differential equations for the variation of the axial bulk tempe
tures in the SAV vessel pair.

The solutions forTa,v andTt are decomposed into a particula
solution and a homogeneous solution. These solutions which
isfy Eqs.~9!–~10! and matching conditions Eq.~11! are

F Ta

Tv

Tt

G5FTh

Th

Th

G1@M #332F d~Tab1F !

dz
d~Tvb1F !

dz

G
1H 1

4 F2
d2F

dz2 2~Tab2F !BPG J

3F 2aa
2 lnS r a

aa
D1aa

21sa
222r asa cosfa2Rt

2

2av
2 lnS r v

av
D1av

21sv
222r vsv cosfv2Rt

2

R22Rt
2

G .

(14)

The third matrix on the right side of Eq.~14! arises from the axial
conduction in the tissue region and the source term. The t
group of terms in the expressions forTa andTv are harmonic and
satisfy the matching conditions on the vessel surfaces, while
third group of terms in the expression forTt satisfies the outside
boundary condition atR5Rt . @M #332 is a 3 by 2 matrix defined
as
Journal of Biomechanical Engineering
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@M #332

53
uaS r a

22
1

4

r a
4

aa
22

3

4
aa

2D 2uaav
2 ln

r v

av

uvaa
2 ln

r a

aa
uvS 2r v

21
1

4

r v
4

av
2 1

3

4
av

2D
uvaa

2 ln
r a

aa
2uaav

2 ln
r v

av

4 Pe0

4

(15)

and Th is the homogeneous solution in the three regions.Th is
given by

Th5uvaa
2 Pe0H ba01(

n51

`

banR
n cos@n~f2p!#J d~Tab1F !

dz

1uaav
2 Pe0H 2bv02(

n51

`

bvnRn cos~nf!J d~Tvb1F !

dz
.

(16)

The solutions for the blood vessels and tissue satisfy the matc
boundary conditions~Eq. ~11!! on the vessel surfaces. Following
derivation similar to that presented in the Appendix of Wu et
@23#, one can solve for the coefficientsban and bvn by applying
the boundary condition atR5Rt

ba05bv05b0520.25 ln@Rt~z!/a~z!# (17)

ban5bvn5bn50.25sn~z!/@nRt
2n~z!#, n51,2,3, . . . . (18)

The temperature solutions in the artery and vein are used to
termine the bulk temperatures~Tab andTvb!. Substituting the ves-
sel temperature expressions into Eq.~13! and evaluating the
double integrals, one can relate the vessel bulk temperature
their gradients:

Tab5A11

d~Tab1F !

dz
1A12

d~Tvb1F !

dz

1A13Fd2F

dz2 1BP~Tab2F !G (19)

Tvb5A21

d~Tab1F !

dz
1A22

d~Tvb1F !

dz

1A23Fd2F

dz2 1BP~Tab2F !G (20)

where the coefficientsA11– 23 which depend onz and the local
vascular geometry, are given by

A1152A225F(
n50

`

bnsn2
11

96GPe0 ua2

52Pe0

ua2

4 H lnFRt

a S 12
s2

Rt
2D G1

11

24J
A1252A215

1

4
Pe0 ua2F(

n50

`

bnsn cos~np!1
ln~ l /a!

4 G
5Pe0

ua2

4 H lnFRt /a

l S 11
s2

Rt
2D G J (21)

A135A2350.25~Rt
22s210.5!.

It is relatively straightforward to apply the new model. Th
original boundary value problem has been reduced to two cou
first-order ordinary differential Eqs.~19! and ~20! for the vessel
bulk temperatures. The coefficients in~19! and ~20! are given by
FEBRUARY 2002, Vol. 124 Õ 125
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Table 1 Tissue temperature distribution

Temperature Distribution at z* 50 at z* 5L*

Arterial temperatureTab* (z* ) model predicted 37~°C!

Venous temperatureTvb* (z* ) model predicted Tvb(L)50.3Tab(0)
ConstantTt local* (z* ) any value between 30–36~°C! 30–36~°C! 30–36~°C!

Linearly decreasedTt local* (z* ) (30236)z* /L* 136 (°C) 36~°C! 30~°C!

Nonlinearly distributedTt local* (z* ) (30236)z* 2/L* 2136 (°C) 36~°C! 30~°C!
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the algebraic expressions in Eqs.~17!, ~18!, and ~21!, which de-
scribe the thermal interaction in the cross-sectional plane. In p
ciple, the axial dependence of the vessel bulk temperatures ca
obtained once the appropriate boundary conditions in the a
direction as well as the functionF(z) are specified. One of the
boundary conditions is the artery inlet temperatureTab0* 537 °C at
z50 and its dimensionless value can be determined accordin
the dimensionless temperature definition, while the other is
relationship between vessel bulk temperatures atz5L which is
determined in Part I@18#. The difference betweenTab* (L* ) and
Tvb* (L* ) is equal to 0.6;0.8 timesTab* (L* )2Tt local* (L* ). Con-
verting this relationship into the definitions of the dimensionle
variables, one obtainsTvb(L)50.2;0.4 Tab(L). In this paper an
average value of 0.3 is used forTvb(L).

5 Results

5.1 Temperature Decay in SAV Vessels for Two Branching
Patterns. We considered three special cases where constant
early decreasing or quadratically distributed local tissue temp
ture distributions are used as the input forF(z) in the model.
These three temperature variations are summarized in Tab
The arterial temperature at the entrance,Tab0* , is equal to the body
core temperature~37°C!. Under hyperemic conditions, which ma
be induced by vasoactive drugs, it is reasonable to assume
only small temperature variations exist within the limb and th
Tt local* (z* ) should be close to the body core temperature. Howe
large tissue temperature variations may occur under normal ph
ological conditions. The tissue temperature is assumed to decr
from 36°C to approximately 30°C as one proceeds from the ce
of the limb to the periphery.

All the other parameters and thermal properties are taken f
the literature and are listed in Table 2. The blood velocity is p
portional to the vessel radius as required by Murray’s law. T
radial size of the tissue cylinderRt0* was determined by requiring
that the blood perfusion rate in the pure perfusion pattern for
normal conditions be equal tov53 ml/100g/min, i.e., v
5pa0*

2u0 /pRt0*
2L* . This blood perfusion value is equivalent t

0.0005 s21 if the blood density is equal to 1000 kg/m3. Previous
experimental studies by Song et al.@15# suggested an eightfold
increase in the blood flow rate when the vessel was manipul
, FEBRUARY 2002
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from a constricted to a fully dilated condition using vasoacti
drugs. Two physiological conditions were considered:~1! a nor-
mal condition:v53 ml/100 g/min; and~2! a hyperemic condition:
v524 ml/100g/min corresponding to drug induced vasodilatio
L* is the distance over which the SAV vessel pair bifurcates fr
1000 to 300mm in diameter under normal conditions and w
calculated from Eq.~6!. We shall examine how blood temperatu
decays in the countercurrent vessel pair over a distance ofL*
512 cm for the two vessel branching patterns shown in Fig. 2

For convenience the dimensionless temperatures in Figs.
are defined as

Tab,vb,t,t local~z!5
Tab,vb,t,t local* ~z* !2Tt local* ~L* !

Tab0* 2Tt local* ~L* !
. (22)

Accordingly, the dimensionless arterial temperature atz50 is al-
ways equal to 1. A calculated dimensionless temperature equ
zero implies a temperature equal to the surface temperature o
tissue cylinder atz* 512 cm.

Figure 4 shows the dimensionless temperature distribution
the SAV artery and vein for the pure branching pattern for both
normal and hyperemic conditions. Note that in this first calcu
tion the tissue temperature at the cylinder surfaceTt local* (z* ) is
uniform in the axial direction. At the end of the cylinder (z*
512 cm), the arterial blood nearly equilibrates with the local t
sue temperature under normal conditions~thin solid line!. How-
ever, for hyperemic conditions, the dimensionless arterial te
perature decays only 10 percent atz* 512 cm ~heavy solid line!.
This is expected since for hyperemic conditions the blood fl
rate is higher and results in less heat loss from the blood ves
Notice also that the venous rewarming of the blood is smaller
the hyperemic conditions. From an energy balance point of vi
heat lost from the SAV artery by conduction through the arte
wall must enter either the tissue cylinder or its countercurr
vein. Therefore, the temperature increase in the SAV vein is
ways smaller than the temperature decrease in the SAV ar
unless the tissue cylinder is infinitely large.

For the pure perfusion pattern shown in Fig. 5, the dimensi
less arterial temperature defined in Eq.~22! decreases to 0.23 an
0.92 atz* 512 cm for normal and hyperthermia conditions, r
spectively. Note thatRt* is axially uniform in the pure perfusion
rn
Table 2 Thermal properties and geometric parameters

Pure Branching Pattern Pure Perfusion Patte

SAV vessel radiusa0* normal:a* (0)5500mm, a* (L* )5150mm
hyperemic:a* (0)51000mm, a* (L* )5300mm

SAV vessel lengthL* 12 cm
Blood perfusion ratev
~for pure branching pattern!

normal: 3 ml/100 g/min or 0.0005 s21;
hyperemic: 24 ml/100 g/min or 0.004 s21;

Vessel eccentricitys0* normal:s0* 5625mm; hyperemic:s0* 51250mm
Blood flow velocityu0* normal:u0* 5100 mm/s; hyperemic:u0* 5200 mm/s
Tissue cylinder radiusRt0* Rt0* 520.14 mm
ConstantC* ~Eq. ~7!! C* 5123.3 mm
Densityr f 1000 kg/m3

Specific heatCf 3600 J/kg K
Thermal conductivitykf 0.5 J/mK
Transactions of the ASME



Journal of Biomechan
Fig. 4 Axial temperature distributions in the SAV artery and vein for the pure
branching pattern under both normal and hyperemic conditions
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pattern while it decays in the axial direction in the pure branch
pattern. If one compares the results given in Figs. 4 and 5, it
be found that less heat is lost from the SAV artery in the p
perfusion pattern and, thus, a smaller temperature decay is
served than that in the pure branching pattern. Another interes
observation from Figs. 4 and 5 is that, unlike the pure branch
pattern, the temperature increase in the vein in the pure perfu
pattern can be either larger or smaller than the temperature
crease in the artery depending on the blood perfusion rate.
fundamental difference between the two branching patterns is
bleedoff from the SAV vessels in the pure perfusion pattern. T
total energy lost in the arterial side is not directly proportional
the temperature difference between two axial locations. Ene
leaving the SAV artery consists of both the conduction loss fr
its surface and the advection due to the bleed off. Both conduc
and advection contribute to the rewarming of the countercur
SAV vein. The venous temperature increase can be larger tha
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artery temperature decay, ifTvb(L) is smaller thanTab0 . This is
more pronounced for the hyperemic condition since the bleedo
significant.

The effect of the axial tissue temperature variation on the a
arterial temperature decay is shown in Figs. 6–9. Figure 6 is
the pure branching pattern under normal conditions. Here
curves represent three tissue temperature profiles. The heavy
line is for a uniformTt local , a linearly decreasingTt local is denoted
by the thin solid line, while a nonlinearly distributedTt local is
represented by the dashed line. For the normal condition, the a
tissue temperature variation has a modest effect on the art
temperature profile; while its effect is smaller for the total he
loss from the artery for the pure branching pattern atx5L. In
contrast, for hyperemic conditions shown in Fig. 7, the arte
temperature profiles vary little~,5 percent! with the tissue tem-
perature variation. Similar conclusions can be drawn for the p
perfusion pattern~Figs. 8 and 9!. Variations in the temperature a
Fig. 5 Axial temperature distributions in the SAV artery and vein for the pure
perfusion pattern under both normal and hyperemic conditions
FEBRUARY 2002, Vol. 124 Õ 127
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Fig. 6 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under normal conditions for the pure
branching pattern
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the tissue cylinder surface result in less than 10 percent an
percent changes in the arterial temperature atz* 512 cm for this
pattern under normal and hyperemic conditions, respectively.

The present model for the SAV vessels makes it possible
evaluate the contribution of various size vessels to the total blo
tissue heat exchange under different physiological conditions.
the pure branching pattern, the total heat released from the b
vessels to the tissue is proportional to the temperature differe
betweenTab and Tvb at the SAV vessel entrance. Similarly, th
heat released from thes vessels to the tissue is proportional
Tab2Tvb at the SAV vessel exit. The percentage of heat relea
from the blood vessels prior to thes vessels is represented by
2@Tab* (L* )2Tvb* (L* )#/@Tab* (0)2Tvb* (0)#. The larger this value,
the greater the fractional heat release by the SAV vessels c
UARY 2002
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od-
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pared to the smaller downstreams vessels. Table 3 summarize
the percentage of heat released in the SAV vessels to the
vessel-tissue heat exchange. One observes that for hyperemic
ditions, far less heat is released in the SAV vessels than in
smaller downstreams vessels and their subsequent branches. U
der normal conditions, more than 48 percent of the total h
exchange occurs in the region containing large SAV vessels
the pure branching pattern. However, less than 10 percent is
leased in the SAV vessels for the assumed hyperemic conditi
The local tissue temperature variation does affect the contribu
of different sized vessels to the total blood-tissue heat excha
Its effect is more pronounced for the normal condition than for
hyperemic condition.
Fig. 7 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under hyperemic conditions for the pure
branching pattern
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Fig. 8 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under normal conditions for the pure per-
fursion pattern
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5.2 Temperature Decay in the SAV Vessels in Human
Limb. Based on results obtained in Section 5.1 for the two li
iting vessel branching patterns, we shall now consider the t
perature decay in the SAV vessels of a human limb. Unfortunat
no detailed anatomic data are available for blood vessels la
than 300mm diameter in the human limb, equivalent to the Myr
hage and Eriksson data for thes vessel tissue cylinder in Part
@18#. We assume that for the blood vessels to be space filling,
vascular structure reproduces itself on a larger scale. As sket
in Fig. 1, the SAV vessels bifurcate from the large muscu
branches and then run roughly parallel to the skin surface. E
SAV vessel pair supplies a large tissue cylinder of uniform rad
via severalP vessels and their subsequents vessels andt vessels.
cal Engineering
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The temperature variation in the muscular branches from the
jor supply artery and vein for the limb is assumed to be sm
compared to that in the SAV vessels. This assumption is due to
large size of the muscular branches and is based on our calcul
in Section 5.1 where less than 10 percent of the temperature d
occurs in vessels between 1000 and 800mm in diameter. The
temperature at the SAV tissue cylinder surface is assumed t
uniform since it is parallel to the skin surface. Thus, in this s
tion, the temperature decay in the SAV vessels is determined f
the thermal interaction between a tapered vessel pair with unif
bleed off, and a uniform radius tissue cylinder with constant s
face temperature.

Several parameters such as the tissue cylinder radius, SAV
Fig. 9 Effect of the temperature variation at the tissue cylinder surface on the
temperature decay in the SAV artery under hyperemic conditions for the pure
perfusion pattern
FEBRUARY 2002, Vol. 124 Õ 129
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sel size at the entrance and exit, and the tissue cylinder length
needed to simulate the temperature field. In Myrahage and E
son’s@19# description of thes vessel tissue cylinder, many musc
fibers ~100 or more! supplied by thet vessels combine to creat
ones vessel tissue cylinder. In the same manner, we propose
manys vessel tissue cylinders combine to provide a larger tis
cylinder supplied by the SAV vessel pair. The SAV vessels p
the same role as thes vessels in our smallers vessel tissue cylin-
der except that they are one order of magnitude larger. Simila
the P vessels are equivalent to thet vessels except that theP
vessels are one order of magnitude larger. The average radii o
P and t vessels in the different muscle tissues listed in Table 1
Part I @18# are 110mm and 12mm, respectively. Applying a simi-
lar scaling law, one finds that the SAV vessel at its entranc
approximately 350mm in radius if thes vessel radius has a
average value of 38mm. The SAV tissue cylinder length is ha
the distance between any two adjacent large muscular branc
Gray’s anatomy text indicates that there are typically three or f
large muscular branches in the human upper limb@24#. The dis-
tance between any two adjacent muscular branches will be
proximately 16 cm if the length of the upper limb is 48 cm. T
blood flow in the SAV artery supplies a tissue cylinder 8 cm
length. The total blood flow rateQ in the SAV artery is then
calculated as 1.61 ml/min. Thus, the tissue cylinder radius ca

Table 3 Percentage of total heat loss prior to the s vessels

Conditions Pattern

Uniform
Tt local

~percent!

Linearly
Decreased

Tt local
~precent!

Nonlinear
Tt local

~precent!

Normal pure branching 83.8 64.8 48.5

Hyperemic pure branching 9.0 4.1 2.2

Table 4 Vascular parameters and blood flow in human limb

a0*
~mm!

ae*
~mm!

Rt*
~mm!

C*
~mm!

L*
~mm!

Q0
~ml/min…

v
~ml/100g/min!

Normal 350 150 14.6 86.8 80 1.61 3
Hyperemic 700 300 14.6 86.8 80 12.9 24
130 Õ Vol. 124, FEBRUARY 2002
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determined by requiring the average blood perfusion rate be e
to 3 ml/100g/min under normal conditions. This will lead toRt0
514.6 mm.

Another parameter that needs to be determined is the SAV
sel size at the midpoint of the tissue cylinder where two S
vessel pairs running in opposite directions meet. Myrahage
Eriksson@19# observed that the average distance between any
adjacentP vessels is about 12 mm; thus, there are an averag
13 ~16 cm/12 mm! P vessels between major muscular branch
The blood flow rate in the centralP vessel at the midpoint of the
SAV tissue cylinder should be equal toQe , the blood flow rate in
the SAV at the juncture of the two SAV vessel pairs. If one a
sumes that all theP vessels have the same blood supply, the blo
supply in eachP vessel will be 1/13 of the blood supply to th
SAV artery at its entrance. Using Murray’s law, one finds that
blood velocityu is proportional to the vessel radius. This requir
that the SAV vessels be approximately 300mm in diameter at the
end of the large tissue cylinder. Under hyperemic conditions
SAV vessels will dilate 100 percent to achieve a local blood p
fusion rate of 24 ml/100g/min. Table 4 lists all the estimat
parameters.

Figures 10 and 11 show model predictions for the tempera
decay along the SAV artery and vein, respectively, in a hum
limb for different blood perfusion rates ranging from normal co
ditions of 3 ml/100g/min to hyperemic conditions of 24 ml/100
min. It is shown that up to 90 percent thermal equilibration can
achieved in SAV arterial blood depending on the blood perfus
rate. The SAV artery has a longer thermal equilibration len
when the blood flow is higher and only 20 percent thermal equ
bration is reached under hyperemic conditions of 24 ml/100g/m
In contrast to the arterial temperature decay, the local blood
fusion rate seems to play a minor role in the venous return t
perature since the dimensionless venous return temperature i
SAV vein is ;0.4 independent ofv, as shown in Fig. 11. The
model predicts that in the human limb, 40 percent of the h
released from the artery is recaptured by its countercurrent S
vein. The independence of the venous return on the blood pe
sion rate is similar to that found for thes vessel tissue cylinder in
part I @18#, and will be discussed more fully in the next section

6 Discussion
In this study a vascular model is developed to simulate

thermal equilibration in the SAV artery and vein. It is shown th
Fig. 10 Temperature decay in the SAV artery in a human limb
Transactions of the ASME
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Fig. 11 Temperature decay in the SAV vein in a human limb
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both the vessel branching pattern and the physiological condit
are the main factors affecting the temperature decay in the S
vessels. Under normal or hyperemic conditions without exter
heating, the local tissue temperature variation seems to pla
minor role in determining the temperature decay in the SAV
tery. The current results provide two limits for the possible te
perature variation in the SAV artery. This SAV arterial temperat
decay, as well as the correction coefficient defined in Part I of
study, can be used in the modified perfusion source term to m
accurately estimate the net heat release from the countercurrs
vessel pair in thes tissue cylinder. One of the shortcomings of a
the continuum models is that they are incapable of accura
predicting point-to-point temperature variation in the vicinity
large blood vessels. This study shows that for hyperemic co
tions encountered in hyperthermia it is a reasonable assumptio
use the body core temperature as the arterial inlet temperatu
the modified perfusion source term for thes vessel tissue cylinder
The lack of thermal equilibration will create large tissue tempe
ture gradients in the vicinity of 300;1000mm diameter vessels.

The search for a suitable energy equation that accurately
flects the heat released or removed by the blood has been a c
theme in bioheat transfer research for nearly half a century.
individual s vessel muscle tissue cylinder defined in the anato
cal studies of Myrhage and Eriksson@19# is the largest repetitive
unit that is common to nearly all muscle tissue whether the tis
is deep or peripheral. This suggested that a single bioheat tra
equation could be derived and applied to all muscle tissue wh
was based on this anatomical unit. In Part I of this study, a mo
fied Pennes source term was derived in which a correction c
ficient was defined to account for the heat loss recaptured by
countercurrents vein. Roemer and Dutton@25# have also proposed
a modified Pennes-like perfusion term based on a generic ti
model for convective energy exchange. Although it is nontis
specific, the correction coefficient is rather complicated and h
to evaluate. This coefficient depends on the total heat tran
coefficients between tissue and blood in artery and vein, res
tively, which vary from generation to generation with the flo
The correction coefficient also depends on the local venous re
and the thermally significant arteries and veins. In comparison,
model developed in this study gives a simple correction coe
cient for the Pennes source term, which ranges from 0.6 to 0.8
muscle tissues. This correction is much easier to apply in prac
In the present paper the temperature distribution in the SAV art
cal Engineering
ons
AV

nal
y a
ar-

-
re
his
ore
nt
ll
tely
f
di-
n to
e in

ra-

re-
ntral
he
i-

sue
sfer
ich
di-
ef-
the

sue
ue
ard
sfer
ec-
.

urn,
the
ffi-
for

ice.
ery,

or the entrance temperature for thes vessel tissue cylinder tha
appears in the new modified source term in Part I of this stu
was calculated for two vascular branching patterns. These patt
represent two limits of possible thermal interaction between S
blood vessels and tissue. Thus, these two cases provide the
sonable range of temperature variation along the SAV artery
one would anticipate for different physiological conditions. It
found that for both vessel branching patterns, at least 77 per
of the thermal equilibration is achieved in the SAV artery before
enters thes vessel tissue cylinder for normal physiological cond
tions. However, for hyperemic conditions most of the heat trans
from the countercurrent blood vessels to the local tissue occur
the tissue region containing smaller blood vessels. There
smaller temperature variation in the SAV arterial blood compa
to that under normal conditions. The dimensionless arterial te
perature in the SAV vessels is almost a constant for both bran
ing patterns during hyperemia. Thus, for this case the arterial t
perature appearing in the modified source term can be treated
constant whose value is close to the body core temperatur
noted earlier.

The heat exchange between countercurrent microvasc
artery-vein pairs has attracted widespread attention since the c
bined theoretical and experimental studies by the authors@3# first
suggested that this might be the dominant heat transfer me
nism in local microvascular blood-tissue heat transfer. T
Weinbaum-Jiji bioheat transfer equation@26# was developed base
on the incomplete countercurrent exchange that took place
tween the paired vessels. However, subsequent studies@14,15,27#
showed that the limit for the validity of the expression for th
effective conductivity describing these vessels was limited to v
sel pairs of,200 mm diameter. The current study can predi
axial temperature distributions in countercurrent vessel pairs ra
ing from 300 to 1000mm in diameter and is also able to evalua
the deviation of the thermal interaction from perfect counterc
rent heat exchange. The model predicts that for a human limb
percent of the heat lost from the SAV arteries and their branche
recaptured by their countercurrent vein. The thermal interac
between the SAV vessels is thus, far from being perfect coun
current heat exchange. We also observe that for these larger
mally significant vessels the gradient of the mean tissue temp
ture does not follow the gradient of the mean blood temperat
This simulation confirms the conclusion of our experimental st
ies @15,27# that the Weinbaum-Jiji equation breaks down in tiss
regions with blood vessels.200 mm diameter.

The 40 percent venous rewarming in a human limb is a co
FEBRUARY 2002, Vol. 124 Õ 131
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al
bined venous rewarming that includes both the SAV ands vessel
tissue cylinders, since the thermal interaction in thes vessel tissue
cylinder was included in the boundary condition applied atx
5L, the end of the SAV vessel tissue cylinder. The fact that
venous return temperature does not depend onv is not a surpris-
ing result. This was previously observed for thes vessel tissue
cylinders in Weinbaum et al.@18#. This behavior is the conse
quence of several assumptions used in the model. First, there
axial temperature gradient in the SAV tissue cylinder. Thus,
countercurrent heat exchange is the only thermal driving force
the blood-tissue heat transfer. Second, the same mass flow i
sumed in each vessel of the SAV vessel pair. Finally, if one co
bines the boundary value problems for both the SAV ands vessel
tissue cylinders, the flow must vanish at the end of the combi
tissue cylinder where both the artery and vein temperatures
equal to the local tissue temperature. In contrast, if there is
axial thermal gradient in the tissue cylinder, the blood flow r
can play a significant role in the venous rewarming. As shown
Table 3, the local tissue temperature profile has a significant e
on the redistribution of the thermal interaction in different tiss
regions. The percentage of the total heat loss prior to thes vessels
is decreased by 35 percent when the uniform tissue tempera
distribution is replaced by a quadratically distributed local tiss
temperature for the normal perfusion rate.

In summary, this study presents a new theoretical framewor
investigate axial temperature variations along countercur
blood vessels from 300 to 1000mm diameter in skeletal muscle
The thermal interaction between the blood vessel pair and
surrounding tissue was investigated for two vascular branch
patterns. It was shown that temperature variations along th
larger thermally significant vessels depend strongly on the va
lar geometry and local blood perfusion rate. The arterial sup
temperature to thes vessel tissue cylinders was evaluated a
used in the modified perfusion source term in Part I of this stu
to evaluate the relative contribution of the SAV vessels and ths
vessels to the overall blood-tissue heat exchange.
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Nomenclature

a 5 vessel radius
C 5 constant in Eq.~4!

Cf 5 specific heat of blood
k 5 thermal conductivity
l 5 vessel center to center spacing

Li 5 vessel length in vessel generationi
L 5 total length of SAV vessels

Pe 5 blood flow Peclet number
r 5 radial coordinate
R 5 radial coordinate

Rt 5 radius of the tissue cylinder
s 5 vessel eccentricity

Tab0 5 arterial blood temperature at its entrance
Tt local 5 temperature at the tissue cylinder surface

u 5 flow velocity component in the axial direction in the
blood vessels

x,y 5 Cartesian coordinates
r 5 density
f 5 polar angle in cylindrical coordinate

Subscripts

a 5 artery
b 5 bulk
f 5 fluid in vessels
h 5 homogeneous solution
t 5 tissue

v 5 vein
0 5 z50
132 Õ Vol. 124, FEBRUARY 2002
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Superscripts

• 5 dimensional parameters and variables
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