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ABSTRACT 
 
A multiscale model was developed in this study to investigate the behavior of 
nanoparticle transport in tissues after intratumoral infusion. It consists of a particle 
trajectory tracking model that considers particle-surface interactions, and a macroscale 
model for fluid flow and nanoparticle transport through deformable tissues. The 
multiscale model was used to quantify the effects of tumor deformation and particle 
binding to the cell surface on the particle distribution. The results show that the rate of 
particle binding to the cellular structure can be reduced by increasing the local interstitial 
fluid velocity, tissue porosity, and surface charge of the particles. Tissue deformation 
induced by the infusion pressure causes backflow and change in tissue porosity near the 
needle tip, which substantially affects the distribution and penetration depth of the 
nanoparticles. Simulations were performed using a variety of infusion conditions to 
quantify the effects of infusion rates, needle sizes, tissue elastic properties, and injection 
amounts on the spatial distribution of nanoparticles in tumors. 
 
1. INTRODUCTION 
 
Hyperthermia has been used in a variety of therapeutic procedures of patients with 
cancers in the past several decades [13]. It is suitable for patients diagnosed with 



 

 

 

2

previously unresectable tumors, or for patients who are looking for an alternative to 
costly and risky surgical procedures. In hyperthermia, thermal energy delivered to tumors 
raises the tumor temperature above 43°C for durations of more than 60 minutes. It has 
been reported that such elevated temperatures may produce a heat-induced cytotoxic 
response and/or enhance the cytotoxic effects of radiation and drugs. Both the direct cell-
killing effects of heat and the sensitization to other therapeutic agents by heat are 
phenomena strongly associated with the distribution of the temperature elevations and 
duration of heating.  

Nanoparticles have found important applications in novel hyperthermia treatment of 
cancers due to their ability to generate impressive level of heat when excited by an 
external magnetic field or laser irradiation [56]. For example, magnetic nanoparticles 
delivered in tumors can induce localized heating when agitated by an alternative 
magnetic field. The heat generation is mainly attributed to the Néel relaxation and/or 
Brownian motion of the particles. Iron oxides magnetite Fe3O4 and maghemite γ-Fe2O3 
nanoparticles are the most employed to date due to their biocompatibility [17, 29, 35]. 
Smaller particles (10-40 nm) are preferred in magnetic hyperthermia applications due to 
their ability to produce impressive level of heating in relatively low magnetic fields [23].  
In laser photothermal therapy where heat generation in tumors is induced by near infrared 
(NIR) laser irradiation on the surface, the inclusion of golden nanoshells/nanorods in the 
tumor leads to maximized absorption of the laser energy to elevate local tumor 
temperatures [5, 12, 41]. Previous studies have demonstrated that the usage of golden 
nanoshells/nanorods can enhance laser energy absorption by several orders of magnitude 
compared to some traditional dyes, such as indocynine green dye [52]. Despite the 
demonstrated potential of various types of nanoparticles in hyperthermia treatment, there 
exist a number of challenges to be addressed before their widespread applications in 
clinical studies. One leading issue is the limited knowledge and understanding of 
nanoparticle distribution and anticipated temperature elevations in tumors. Since 
nanoparticles serve as the heat generating agents, the efficacy of the treatment depends 
largely upon the spatial distribution of the nanoparticles in tumors. The lack of control of 
nanoparticle distribution may lead to under-dosage of heating in the tumor or overheating 
of the normal tissue.     

Two techniques are currently used to deliver nanoparticles to a tumor. The first is 
systemic (venous) injection of dispersed nanoparticles in biocompatible solution. The 
majority of the nanostructures eventually accumulate in tumors due to the small size of 
the nanostructures and the leaky nature of tumor vasculature. The efficiency of the 
systemic delivery can be improved by coating the nanostructures with some chemicals 
that target tumor cells [60]. However, systemic administration is not suitable for poorly 
perfused, large-sized, and irregular-shaped tumors. The second approach, which is the 
focus of the current study, is direct infusion, also referred to as intratumoral infusion or 
convection enhanced delivery. It is an important technique to deliver a variety of 
nanostructures in tumors by continuous injection of nanofluid under positive pressure 
gradient [2, 17, 18, 32]. It is so far the best method available for distributing large 
therapeutic agents in tumors in that it allows those agents to overcome some of the 
obstacles such as interstitial fluid pressure or brain blood barrier, through enhanced 
convective transport [34]. This approach has been used to deliver ferrofluid to treat 
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tumors in liver [32] and breast [17, 18]. In case of an irregular shaped tumor, multiple-
site injections can be exploited to cover the entire targeted region [50].  

Quantitative characterization of the nanoparticle distribution in tissue after infusion is 
very limited due to the opaque nature of the tissue and insufficient techniques to quantify 
the nanoparticle concentration distribution. Salloum et al. [48, 49] studied the injection of 
ferrofluid in semi-transparent agarose gels and demonstrated that the distribution volume 
of ferrofluid is sensitive to both the injection rate and the agarose gel properties. In 
addition, a higher infusion rate yields a more irregular shaped nanofluid distribution in 
the gel. In the same studies, heating patterns of the magnetic nanoparticles injected in 
gels/tissues were quantified by placing the gels/tissues in an alternative magnetic field 
and measuring the Specific Absorption Rate (SAR) at multiple locations. These studies 
suggested that the SAR distributions can be used to characterize the nanoparticle 
concentration based on the hypothesis that heating distribution is solely dependent on the 
spatial distribution of the nanoparticles when other parameters such as the type of the 
ferrofluid, the properties of the particles, the properties of the gel/tissue, and the strength 
of the magnetic field are fixed. The non-uniform SAR distributions obtained in these 
studies illustrate a heterogeneous nanoparticle distribution in gels/tissues [48, 49]. A 
Gaussian distribution of SAR was proposed based on fitting the experimental 
measurement. Although a qualitative relation among the injection parameters, gel 
properties, particle distribution, and heat generation is established, the understanding of 
the nanofluid and nanoparticle transport in gels/tissue and its dependence on the major 
injection parameters remains poorly understood. 

The transport of nanoparticles in biological tissues during an infusion is a complex 
process that involves nanofluid flow through deformable tissues, advection of particles in 
the porous structures, particle binding to the cellular structure, and interactions among the 
particles. When a nanofluid is infused through a needle, the shape and volume of the 
nanofluid distribution in a tumor is largely dependent on the established velocity field, 
which is determined by both hydraulic characteristics of the tissue as well as the elastic 
response of the tissue to the infusion pressure. As the particles travel in the interstitial 
space, some can bind to the cell surface, causing nanoparticle deposition on the cellular 
structure. The deposition rate is affected by the interstitial fluid velocity and tissue 
structure as well as the characteristics of the particles. Nanofluid flow and particle 
binding to the cellular structures are two interrelated mechanisms having substantial 
influence on nanoparticle distribution during an infusion process.  

Previous studies of direct infusion for drug delivery show that infusion can induce 
deformation in tissues which in turn changes the hydraulic conductivity of tumor tissues 
by altering the size and connectedness of the aqueous pathways [22, 34]. Tissue 
deformation can also affect nanoparticle transport because it changes the effective pore 
size of the extracellular structure [37]. McGuire et al. [34] developed a one-dimensional 
poroelastic model to describe the non-homogeneous tissue deformation. Chen et al. [8] 
conducted a combined experimental and theoretical study of the poroelasticity in brain 
tissue equivalent phantom gels to characterize the influence of gel deformation on the 
infusion pressure, gel matrix dilation, and pore fraction. However, this study is limited to 
soft gels and low infusion rates in the range of 0.5 to 10 µl/min. Ivanchenko et al. [21] 
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measured the deformation of gel matrix due to fluid infusion and analyzed the changes in 
hydraulic conductivity and porosity close to the catheter tip. The results were obtained 
with brain tissue equivalent phantom gels and a single infusion rate of 5 µl/min. Tissue 
deformation also contributes to the formation of backflow of the infusate along the needle 
track. Backflow is considered an important issue for enhanced convection delivery of 
therapeutic agents in brain tumors [2]. Morrison et al. [36] and Raghavan et al. [42] 
derived a simplified analytical model to quantify the backflow distance as a function of 
infusion parameters and tissue properties. Although the analytical solution provides 
valuable insight into the process, it involves bold assumptions and does not give 
prediction of the shape of the infusate distribution.  
The convection and diffusion of large therapeutic agents such as antibodies and 
nucleotides by pressure-driven intratumoral infusion has been extensively studied in the 
past several decades [6, 11, 22, 33, 61]. However the existing theory is not readily 
applicable to nanoparticles because the nano-sized particles are associated with strong 
surface interactions that could lead to particle binding on the cell surface. Su et al. [54] 
conducted a multi-scale study of nanoparticle transport in biological tissues during an 
injection process. This model predicts nanoparticle deposition on the cellular structure via 
a trajectory tracking analysis considering particle-cell interactions. Nanoparticle 
penetration depths predicted by this multi-scale modeling are at the same order of 
magnitude with those indicated by experimentally measured SAR distributions. This 
study suggests that nanoparticle deposition on the extracellular structure is a leading 
factor for the non-uniform particle distribution in the porous medium. This model is one-
dimensional and the effects of tissue deformation on the particle transport are not 
considered. Neeves et al. [37] attempted to enhance penetration depth of infused polymer 
nanoparticles (54 nm) by dilation and degradation of the brain extracellular matrix. It was 
found that dilating the extracellular spacing by pre-infusion of a buffer solution offers an 
effective means to enlarge the nanoparticle distribution volume.  

Despite the existing numerical and experimental studies of the direct infusion process, the 
understanding of nanoparticle transport in deformable tissue is very limited. The 
objective of the current study is to investigate the interrelated mechanisms of nanofluid 
transport in tumors. Presented in this paper is a multi-scale model that considers fluid 
flow and deformation of tissue during an infusion process, particle interaction with the 
cellular structure, and nanoparticle advection and deposition in tissues. The integration of 
the three components allows one to study the nanoparticle transport behavior during an 
infusion process. The influence of the deformation induced backflow and change in 
porosity on particle distribution was quantified under a variety of process conditions. 
Parametric studies were also performed to examine the effects of infusion rates, infusion 
volumes, needle sizes, and tissue properties on nanoparticle concentration distribution. 
 
2.    THE MATHEMATICAL MODEL 
 
The behavior of nanoparticle transport in biological tissues stems from the complex 
chemicophysical processes occurring on largely disparate temporal and spatial scales. 
The resulting nanoparticle distribution is dependent not only on the particle advection, 
diffusion, and deposition in the porous structure, but also on the mechanical response of 
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tissue to the infusion pressure. Specifically, the formation of backflow and the change of 
porosity during an infusion process can affect nanofluid distribution and rate of the 
particle binding to the cell surface. In this study, the nanoparticle transport in biological 
tissues during an intratumoral infusion is described by a multi-scale model that consists 
of three major components: (a) a poroelastic model for fluid flow through tissue and 
tissue deformation; (b) nanoparticle convection, diffusion, and deposition in tissues; and 
(c) a particle trajectory tracking model for particle interactions with the cell surface. The 
integrated model can be used to predict the behavior of nanoparticle transport in tissues 
for a variety of infusion parameters.  
 
2.1 Fluid Flow and Tissue Deformation during an Infusion Process 
 
We assumed that the porous structure before an injection is homogenous. The nanofluid 
with a particle volumetric concentration less than 5% is considered as an incompressible 
dilute colloidal fluid where the presence of the particles does not significantly affect the 
transport properties of the fluid [62]. The effects of gravity, osmotic effects, particle 
agglomeration on fluid transport, and fluid exchange between the interstitial fluid and 
blood or lymph vessels are not considered in this study [7, 34]. Fluid flow and tissue 
deformation are considered steady state [54]. With these assumptions, the fluid flow 
through tissue is described by Darcy’s equation [25]  

0)( =⋅∇ vε      (1) 

v
K

p f
εμ

−=∇  ,      (2) 

where ε is porosity, v is interstitial fluid velocity vector, pf is fluid pressure, μ is the 
viscosity of the fluid, and K is permeability of the tissue.  

During an infusion, backflow forms as the hydraulic pressure opens an annular space 
surrounding the needle outer surface. The bulk fluid flow in the annular space is 
governed by the conservation of mass and momentum, which are   
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In the  poroelastic model, the solid phase of the medium is assumed to be Hookian 
material, incompressible, isotropic, and fully saturated with fluid. The deformation during 
the infusion is infinitesimal. Also, the study focuses on the resultant deformation rather 
than the deforming process, i.e., the deformation is instantaneous. The constitutive 
equation for tissue deformation yields: 

( ) ( ) )(2
fpGG ελ ∇=⋅∇∇++∇ uu ,       (4) 

where u is the displacement vector, and G and λ are the Lamé constants. Given Young’s 
module and Poisson ratio, G and λ can be calculated by using the following two 
relationships λ=Eυ/((1+υ)(1-2υ)) and G=E/(2(1+ λ)). 

One should note that the porosity and permeability in Eqs. (1) and (2) are spatially 
varying in the presence of tissue deformation; both are functions of dilatation e, where 

u⋅∇=e . With the assumption that the volume of the solid phase of the porous medium 
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does not change for small deformation, the porosity ε is calculated by the following 
expression [7, 8], 

e
e

+
+

=
1

0εε ,                       (5) 

where ε0 is the tissue porosity in the absence of deformation. Various empirical 
relationships have been proposed to quantify permeability K as a function of dilatation e 
[15, 19, 28]. In this study, we employed a commonly used relation proposed by Lai and 
Mow [28] which yields an exponential increase in tissue permeability with dilatation e:    

)exp(0 MeKK = ,                     (6) 

where K0 is the permeability in the absence of deformation and M is a material constant 
that governs the variation of permeability with the dilatation. Typically it is related to the 
tissue properties, the densities of the cells, and the extracellular matrix [7]. Through 
curve-fitting of experimental data, previous studies suggest that M is in the range from 0 
to 5 [7, 28, 53]. We used a constant M=2 in this study.  

2.2 Nanoparticle Convection and Diffusion in Tumor 

The transport of large therapeutic agents in tissue is typically described by convection 
and diffusion equations with extra terms to consider mechanisms such as internalization 
of drugs by cells, collection of macromolecules by circulation, reactions on the cell 
surfaces, etc. In this study, the short injection duration (less than one hour) renders the 
extravascular exchange of nanoparticles through a capillary wall insignificant. The 
nanoparticle internalization does not alter the macroscale particle concentration profile, 
and thereby, can be neglected. The binding of nanoparticles on the cellular structure, on 
the other hand, is an important mechanism that reduces the particle concentration in the 
fluid phase and substantially affects the nanoparticle distribution in the tissue [37, 54]. 
The attachment of nanoparticles to the cellular structure can be treated as a concentration-
dependent reaction that consumes particles in the fluid phase [58]. This phenomenon can 
be described by a volumetric deposition rate in the convection and diffusion equation. 
Deposition rate coefficient, a quantity analogous to the rate constant of a chemical 
reaction, is used to quantify the dependence of the volumetric deposition rate of the 
particles on local particle concentration, particle size and properties, local velocity, 
porous structure, etc. With the assumption that the particle binding to the cell surfaces is 
irreversible, the modified equation for nanoparticle transport in a porous tissue is 

[ ] CkCDC
t
C

fe −∇⋅∇=⋅∇+
∂
∂ ) ( v ,                     (7) 

where C is the molar concentration of the particles in the fluid, the term kfC represents the 
volumetric deposition rate of the particles on the solid phase, and kf is the deposition rate 
coefficient. De is the effective diffusion coefficient which is calculated based on the 
diffusion coefficient in an unbounded liquid phase and tortuosity of the tissue [14]:   
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where D0 is the diffusion coefficient in an unbounded liquid phase, kB is the Boltzmann’s 
constant, T is the absolute temperature, dp is the particle diameter, L is the factor 
responsible for hydrodynamic reduction of the diffusion coefficient in the pore, τ(ε) is the 
tortuosity which is the function of porosity ε, and F is a shape factor valued from one to 
four [44, 51]. The volumetric concentration of the nanoparticles bounded to the solid 
structure S can be calculated by the equation 

Ck
t
S

f=
∂
∂ .                            (9) 

2.3 Particle Trajectory Tracking Model for Calculation of kf 

The deposition rate coefficient is a function of many factors such as local fluid velocity, 
geometry of the porous structure, the surface properties of both particle and the solid, etc. 
kf can be determined by experimental measurement and theoretical calculation in the 
studies of colloidal particle transport in sand or soil bank [58, 59]. When experimental 
measurement is not available or feasible, particle trajectory tracking method is widely 
used to determine the deposition rate coefficient [40]. In this method, the suspended 
particles are treated as individual entities and the trajectories of these particles in a 
representative unit structural cell of a porous medium are determined based on the forces 
acting on these particles under a set of conditions.  When a particle is in contact with the 
solid surface, a binding is counted [38]. By delivering a large amount of particles into the 
unit structural cell, the collector efficiency ηs, defined as the ratio of the particles captured 
by the solid surface to those brought into a unit structural cell of the porous medium, can 
be determined. ηs measures the probability of particle interception by the solid structure. 
Once the collector efficiency is calculated, the deposition rate coefficient for a porous 
medium consisting of spherical bodies with a diameter of dc, can be calculated by the 
equation [58]: 

( ) vs
c

f d
k η

ε
ε

2
13 −

=  ,     (10) 

where v is the magnitude of the local fluid velocity. 

Happel’s sphere-in-cell model [16] is widely used as the unit structural cell for granular 
porous media [38, 43, 59]. As schematically shown in Fig. 1, it consists of a solid 
spherical body representing a cell and a uniform layer of fluid that envelops the sphere. 
The thickness of the fluid layer is calculated as γ=ac[(1-ε)-1/3-1]/2, where ac is the 
diameter of the solid sphere [38]. Selection of unit structural cell for tissue is a challenge 
due to the existence of the extracellular matrix. While tissues are typically conceptualized 
as porous structures consisting of nearly spherical cells in the studies of drug delivery [8], 
Netti et al. [39] reported that collagen can significantly hinder the diffusion of large 
molecules. However, it is unclear to what extent the extracellular matrix affects the 
convective transport of the particles due to limited study on this topic. Further, it is a 
formidable task to include the collagen fibers in a unit cell at current stage. Considering 
that the focus of the study is the effect of particle deposition on particle transport, we 
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study an ideal situation where the presence of the extracellular matrix can be neglected 
and use the Happel’s model as the unit structural cell for tissue.  

 

 
Figure 1 Happel’s sphere-in-cell for the particle trajectory tracking analysis,  
b = ac(1 - ε)-1/3, where ε is porous porosity. Black dots refer to nanoparticles [38] 

 

The details of the particle tracking model can be found in the literature [54]. In brief, we 
assume that the particles are small (nanosized particles), spherical, chemically inert, 
solid, and very dilute in a liquid that flows with a low Re number in the laminar regime. 
Hydrodynamic interactions among the particles are neglected. Typically the particles are 
properly coated to prevent agglomeration. 

The forces that act on a particle near a solid surface immersed in the moving fluid include 
van der Waals attractive force, electrostatic double layer force, hydrodynamic drag force, 
lift force, buoyancy force, and Brownian motion. The van der Waals force and 
electrostatic double layer force act along the normal direction of a surface and only 
become significant at close separation distance between the particles and a surface. The 
lift force pushes particles away from the surface towards the direction of increasing 
velocity [24, 31]. A particle fully immersed in a fluid also experiences an upward 
buoyancy force. For a nanoparticle, buoyancy force is insignificant when compared with 
other forces due to its small size. Basset force which is important for a particle 
accelerated at a high rate is neglected due to the laminar flow conditions used in the 
current study [24]. Magus force is considered negligibly small when compared to the 
drag force because of the small particle size [24].  

For submicron-sized colloids whose relaxation time is small, one could neglect the inertia 
force and assume that the particles relax to the fluid velocity instantaneously. The 
colloidal particle trajectory is then governed by the Stochastic Langevin equation [30, 38, 
61]: 
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where drj is the displacement vector of jth particle, D is the particle diffusivity, Fi 
represents the forces acting on the particle, v is the fluid velocity, and (Δr)j

B is the 
random Brownian displacement. Δt is the time interval used in the integration. 

The velocity expressions in a Happel’s sphere-in-cell shown in Fig. 1 are obtained 
directly from the stream function of Stokes flow in the Happel’s model. The radial and 
azimuthal velocities, respectively, are [16] 
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where K1=1/w, K2=−(3+2p5)/w, K3=(2+3p5)/w, K4=−p5/w, w=2−3p+3p5−2p6, 
p=(1−ε)1/3, and r*=2r/dc. 

When a freely moving particle travels near a rigid surface, the extra viscous 
resistance exerted by the wall and the rotation of the particle can substantially modify 
both the velocity and mobility of the particle. This is referred to as hydrodynamic 
retardation. The correction factors used in this study are given in the reference [54]. 

Viscous Lift Force 
Particles traveling across a velocity gradient caused by the presence of a wall can 
experience a lift force that directs a particle away from the wall. Saffman force is 
insignificant for nanoparticles having a very small Stokes number [47]; rather, pressure 
difference across the particle and particle rotation can cause an appreciable lift force on a 
non-inertia particle [31]. Cox and Hsu derived the following expression to calculate the 
lift velocity for non-inertia spherical particles in a laminar parabolic flow field near a 
single vertical plane [10]: 
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where h is the distance between the particle centre and the wall, hmax is the distance at 
which the velocity profile reaches its maximum vf,max. More details about the calculation 
of the lift force can be found in the reference [1]. Given the lift velocity vlift, the lift force 
can be obtained accordingly: 

liftplift d vF πμ3= .                 (14) 

van der Waals Force and Electrostatic Double Layer Force 
The potential for particle-surface interactions within the interaction range is calculated 
according to the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory [46]. The 
DLVO potential interaction forces can be derived through the differentiation of the 
potential interaction energies [20]: 
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where Aelec is the potential due to electrostatic interaction and AvdW is the potential due to 
van der Waals force between particles and a surface. Since the size of a nanoparticle is 
much smaller than that of a cell, their interactions can be approximated as those between 
a particle and a flat wall.  

The van der Waals interaction energy between a sphere and a wall at a distance of h is 
expressed as [20]: 

)12/( hdAA pHvdW −= ,                             (16) 

where AH is the Hamaker constant, which can be calculated by an empirical formulation 
provided by the reference [46]. 

According to the Gouy-Chapmann model of a diffuse double layer and electrostatic 
Poisson-Boltzmann equation, Aelec between a spherical particle and a flat surface with the 
zeta-potentials of ψ1 and ψ2, respectively, is given by the following equation: 
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where ε0 is the vacuum permittivity, εr is the relative dielectric constant of the water, I is 
the electron charge, and θ is the valence of the electrolyte. The effect of the aqueous 
environment is reflected by the Debye-Hückel parameter κ.  

Brownian Motion 
Brownian motion is formulated through Brownian displacement (Δr)B, a random value 
taken from a Gaussian white noise distribution with a zero mean W(t) and a specific 
intensity that relates to the Mean Square Displacement (MSD). Stokes-Einstein equation 
is used to calculate the MSD [20]:  

( ) tDt
f

TktMSD B Δ=Δ=Δ= 22)( 22 r , pdf πμ3=            (18) 

A freely moving particle may experience rotations near a solid surface. In the case of 
spheroid and ellipsoidal particles, the determination of the rotational velocity is essential 
because the interaction energy is dependent on the particle orientation. However, 
spherical particles are symmetric and hence are less likely to be affected by the particle 
rotation [61]. Therefore, the particle rotational velocities are neglected in the trajectory 
tracking analysis. The effect of particle rotation on the motion of a particle near a surface 
is considered through the lift force and corrections of the fluid velocity and particle 
mobility. 

The particle trajectories are determined by integrating Eq. (11) using the predictor-
corrector method [27].  At the beginning of a particle trajectory analysis, a large number 
of particles are distributed randomly over the curved segment extending from y=0 to y=b 
as shown in Fig. 1 [45]. The vertical position of a particle is determined by 
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by iξ=0  ,                                  (19) 

where ξi is a sequence of uniformly distributed random number in the range of zero to 
unit, and b is the radius of the fluid shell shown in Fig. 1. Once its vertical position is 
determined, the x coordinate of an entering particle can be determined as 

2/12
0

2
0 )( ybx −−= .                         (20) 

A particle deposition is counted if the calculated trajectory of a particle reaches the solid 
surface. Through calculating the trajectories of a number of particles, the collector 
efficiency can be determined for various combinations of parameters such as particle 
size, surface properties, local fluid velocity, etc. Note that the number of particles used in 
the simulation should be sufficiently large to ensure that the collector efficiency is 
independent of the particle number and the result is statistically meaningful. 

The time step Δt should be sufficiently small such that the deterministic forces remain 
constant during each time interval. Also, the assumption of negligible particle inertia 
requires that the time step should be much greater than the particle relaxation time τp=mp 
f-1. Thus, the requirement of the time step may be written as τp<<Δt<<τu where τu is the 
time increment at which deterministic velocity is considered constant. This study used a 
Δt of 10-5 s. 

2.4 Model integration  

The three components of the model were integrated to simulate nanofluid transport 
during an infusion process by conducting the following tasks in sequence: (a) Equations 
(1) – (6) were solved iteratively to determine the fluid velocity field, tissue deformation, 
and the distribution of the porosity. This provided information on the range of velocity 
and porosity for a given set of infusion conditions; (b) the particle trajectory tracking was 
conducted to calculate the deposition rate coefficients for various velocities and tissue 
porosities in the range prescribed in step (a). We used curving fitting to derive the 
relationship of deposition rate coefficient to velocity and porosity; (c) Equation (7) for 
nanoparticle convection, diffusion, and deposition in the tissue can be solved with 
velocity field obtained in the previous calculation. The dependence of particle deposition 
on velocity and porosity is accounted for by using the function obtained in step (b). Since 
Eq. (7) is transient, the injection duration is determined by injection amount and injection 
rate. The geometries and the boundary conditions used in the simulations are given in 
section 4 and 5. A commercially available multiphysics software COMSOL® was used 
in this study. Major simulation parameters, tissue and particle properties are given in 
Table 1.  
 

Table 1. Major parameters and properties in the simulation 
Properties and Parameters Values 
Infusion amount 0.1 cc 
Needle size 22, 26, and 32-gauge, Hamilton needle 
Infusion rate 5 ~15 μl/min 
Nanofluid concentration 0.75M ferrofluid (3% by volume) 
Magnetic nanoparticle  Fe3O4 
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Nanoparticle density 5240 kg m-3 
Nanoparticle diameter 20 nm 
Nanoparticle diffusivity 10-11~10-12 m2 s-1 [54] 
Nanoparticle surface zeta 
potential –20 mV ~ – 60 mV 

Tumor diameter  10 mm 
Young’s module of tissue (E) 60 KPa [9] 
Young’s module of tumor (E) 0.2 ~ 0.5 MPa [4,7] 
Tumor Permeability 5×10-16 m2 [7, 39] 
Tissue permeability 1×10-14 m2 [57] 
Tissue/Tumor Poisson ratio 0.35 [7, 34] 
Tissue Porosity 0.4 [34] 
Tumor porosity 0.2 [39] 
Cell diameter 20 µm 
Cell surface zeta potential –20 mV [54] 

 
3. PREDICTION OF DEPOSITION RATE COEFFICIENT  

 
In this study, the dependence of the deposition rate coefficient on particle surface charge 
and porosity at various velocities was studied using the particle trajectory tracking model. 
Shown in Fig. 2a are the variations of the deposition rate coefficient (kf) with fluid 
velocity for particles with different surface charges: –20, –40 and –60 mV. Nanoparticles 
of 20 nm diameter, cells of 20 μm diameter, and tissue porosity of 0.2 were used in this 
simulation. The result shows that deposition rate coefficient decreases with local fluid 
velocity monotonously for all the surface charges. Due to the repulsive force that keeps 
particle away from the cell surface, increasing the surface charge of the particles can 
significantly reduce the deposition rate coefficient.  Figure 2b shows the dependence of 
deposition rate coefficient on local velocity for three tissue porosities: 0.2, 0.3 and 0.4. 
There is clear indication that porosity is an important parameter than affects the rate of 
particle deposition on the cell surface. A higher porosity leads to lower deposition 
coefficients because of the larger interstitial space between the cells.  
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Figure 2a Variations of deposition rate coefficient (kf) with velocity for various surface 
charges of the particles (ψc= – 20 mV, dp=20 nm, ac=20 μm, ε=0.2) 
 

 

 
Figure 2b Variations of the deposition rate coefficient (kf) with velocity for various 
porosities, (ψc = –20 mV, ψp= – 20 mV, dp=20 nm, ac=20 μm) 
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4. ONE DIMENSIONAL NANOPARTICLE DISTRIBTIONS IN   
           NON-DEFORMABLE TUMORS  
 
The multiscale model was used to calculate one-dimensional particle distribution in a 
non-deformable spherical tumor of 10 mm diameter for various infusion rates, particle 
surface charges, and tissue porosities. Nanofluid is assumed to be delivered from a point 
source at the center of a tumor. The boundary conditions at the center of the tumor are 
constant infusion velocity and nanoparticle concentration. At the tumor outer boundary, 
p=0 and 0/ =∂∂ rC  are applied. Figure 3 shows the particle distributions along the radial 
direction for various infusion rates. It is observed that the total particle concentration 
decreases exponentially in the radial direction at the center. The particle concentration 
distributions for various surface charges and tissue porosities at the infusion rate of 
5µl/min are shown in Figs. 4 and 5, respectively. It is evident that nanoparticle surface 
potential plays a vital role in the infiltratoin of the nanoparticles in tumors. Consistent 
with the relationship between deposition rate coefficient and tissue porosity demonstrated 
in Fig. 2b, nanoparticle distribution is sensitive to the change in tissue porosity.  
 
 

 

 
Figure 3 Distributions of nanoparticle concentration for various injection rates.  
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Figure 4 Distributions of nanoparticle concentration for various particle surface charges  
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Figure 5 Distributions of nanoparticle concentration for various tumor porosities.  
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5. NANOFLUID INFUSION IN DEFORMABLE TUMORS 
 
We studied the nanofluid infusion process in deformable tissues in an axisymmetric 
domain depicted in Fig. 6. It schematically shows a nanofluid infused through a needle 
into a spherical tumor embedded in 20 mm thick normal tissue. The boundary conditions 
used in this study are as follows: a finite pressure Pinf  and constant concentration of the 
nanofluid C=C0 are applied at the needle tip;  at the outer boundary r=R,  P=0, and 

0/ =∂∂ nC , where n is the unit normal vector at the outer boundary. The value of Pinf is 
adjusted in the simulation so that it yields the desired infusion rate. No-slip condition is 
applied on the surfaces of tissue and the needle exposed to the backflow. For tissue 
deformation, a constant hydraulic pressure Pinf is applied on the needle tip, which yields 

inf)2( P
z

uG z −=
∂
∂

+ λ .     (21) 

At r=R, we consider a case of deep-seated tumor and a fixed boundary condition, u=0 is 
applied. The interface between the tissue and needle is considered deformable interface 
which allows the tissue to recede from the needle surface. The original tumor porosity is 
0.2 and the surface charge of the particle is –60 mV. The nanofluid concentration, tumor 
size, tumor and tissue properties, and other major parameters used in the model are given 
in Table 1. 
  

 

 

 

 

 

 

 
Figure 6 Configuration for nanofluid infusion in a tumor embedded in 20 mm normal 
tissue. 
 
Shown in Fig. 7a is the nanoparticle distribution in a tumor for a baseline case where the 
infusion rate is 5 µl/min, the needle size is 26 gauge, and the Young’s modulus E is 0.5 
MPa. It can be seen that the particle distribution is not spherically symmetric; rather, it 
illustrates particle transport along the needle track due to the formation of backflow. The 
backflow length is 6 mm. Figure 8a shows the corresponding porosity distribution in the 
tumor. Increased porosity near the needle tip is observed. A similarity between the shapes 
of the concentration and porosity distributions is observed, suggesting the influence of 
enlarged tissue porosity on the particle dispersion.  
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Figure 7 Distributions of nanoparticle concentration for (a) baseline case with infusion 
rate of 5µl/min, E=0.5MPa, and 26 gauge needle, (b) 10 µl/min, (c) 32 gauge needle, and 
(d) E=0.2 MPa.   L is the backflow length. 
 
 

 

 

 

 

 
 
 
 
Figure 8 Distributions of tissue porosity for the infusion rates of (a) 5µl/min, and (b) 10 
µl/min. (E=0.5MPa, ε0=0.2, M=2, 26 gauge needle)   
 

 
 
(a)  L=6mm      (b)  L=11mm 
 

 
            
     (c) L=4 mm             (d) L=15 mm 

 

                     
(a) 5µl/min                                (b) 10 µl/min 

Concentration (M) Concentration (M) 

Concentration (M) Concentration (M) 

Porosity Porosity 



 

 

 

18

The effect of the infusion rate on tissue deformation and particle distribution is studied by 
changing the infusion rate while holding other parameters prescribed in the baseline case 
constant. Shown in Figs. 7b and 8b, respectively, are the particle and porosity 
distributions for the infusion rate of 10 µl/min. In addition to a longer backflow length, 
the infusion rate of 10 µl/min yields a larger tissue porosity and lower particle 
concentration near the injection site. The variations of porosity and nanoparticle 
concentration along the injection direction for different infusion rates are shown in Figs. 
9a and 9b respectively. For both infusion rates, tissue porosity and nanoparticle 
concentration decrease monotonously in the radial direction from the injection site. A 
higher infusion rate causes a deeper particle penetration depth and lower nanoparticle 
concentration at the needle tip. In comparison to the particle distribution in the absence of 
tissue deformation (Figure 3), the particle concentration decays less sharply in the radial 
direction.   

A 32 gauge needle was employed in the simulation to examine the effect of the needle 
size on the nanofluid infusion.  Note that 32 gauge needle is thinner than a 26 gauge. The 
predicted distribution of nanoparticles is shown in Figure 7c. It demonstrates that 
reducing the needle size yields a shorter backflow length (4 mm) despite of the elevated 
infusion pressure required for delivering the same amount of infusate. This result is 
consistent with the study of Morrison, et al. [36]. Figures 10a and 10b compare the 
variations of the porosity and particle concentration along the injection direction, 
respectively, for two different needle sizes, 26 and 32 gauge. There is clear indication 
that the smaller needle size is associated with a larger tissue pore size, and a lower 
particle concentration at the needle tip.  Also, a deeper penetration depth occurs when the 
smaller needle size is used.  

Figure 7d displays the nanoparticle distribution for tumors with a different value of 
Young’s modulus, E=0.2 MPa. In comparison to Figure 7a where E=0.5 MPa, a lower 
value of Young’s Modulus makes the tissue easier to deform, leading to elongated 
backflow length and enlarged porosity near the needle tip (Figure 11a). As a result, there 
is less particle accumulated near the needle tip (Figure 11b).  
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Figure 9 Variations of porosity (a) and particle distribution (b) along the injection 
direction for various infusion rates (E=0.5MPa, ε0=0.2, M=2, 26 gauge needle) 
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Figure 10 Variations of porosity (a) and concentration (b) along the injection direction 
for various needle sizes. 
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Figure 11 Variations of (a) porosity and (b) particle concentration along the infusion 
direction for various Young’s moduli.  
 

We compared the nanoparticle concentration distributions in a tumor with various 
amounts of nanofluid infused.  The pattern of nanoparticle distribution in a tumor with 

N
an

op
ar

tic
le

 c
on

ce
nt

ra
tio

n 
M

) 

Distance from injection site (mm) 
(b) 

E=0.5MPa 

E=0.2MPa

26 gauge, ε0=0.2, 5 µl/min 

Po
ro

si
ty

 

Distance from injection site (mm) 
(a) 

E=0.5MPa 

E=0.2MPa

26 gauge, ε0=0.2, 5µl/min 



 

 

 

22

0.2cc nanofluid is similar to that shown in Fig. 7a and therefore, is not displayed. The 
variations of nanoparticle distributions along the injection direction are shown in Figure 
12.  
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Figure 12 Variations of particle concentration distribution along the injection direction 
for various injection amounts. 
 
6. DISCUSSIONS 
 
In hyperthermia treatment of cancer, tumor cells are killed by maintaining sufficient 
temperature elevations for a period of time. Typically, 43°C (6°C above 37°C) is the 
minimal temperature threshold to induce cytotoxic responses if the heating time is longer 
than one or two hours. Salloum et al. [50] proposed an optimization algorithm for 
irregular large-sized tumors with magnetic nanoparticles being delivered at multiple sites. 
The developed algorithm allows adjustments of injection parameters such as injection 
sites, injection rates and injection amounts for elevating at least 90% of a tumor above 
certain threshold temperature (43°C), while less than 10% of the normal tissue 
temperatures exceed this threshold. The success of this optimization algorithm requires 
controlled particle distribution at each injection site. Understanding the particle transport 
mechanism and the effects of injection parameters are critical for designing the multisite 
injection strategy.  

Particle binding to the cellular structure has been identified as an important factor that 
causes the non-uniform particle distribution in tissues and limits the penetration depth of 
the particles after infusion [54]. The rate of particle binding to the cell surface is 
dependent on many factors, among which we consider the interstitial fluid velocity, 
porosity, and particle surface properties are most important. Local velocity affects the 
particle binding through two competing mechanisms: high fluid velocity brings more 
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particles into a unit structural cell per unit time; on the other hand high local fluid 
velocity yields greater lift force that keeps particle away from a solid surface.  Our 
simulation results show that the latter dominates and the deposition rate coefficient 
decreases with fluid velocity for various particle surface potentials and tissue porosities. 
The repulsive electrostatic force plays an important role in keeping the particles from 
binding to the cell surfaces. Proper coating of the particles is an important means to avoid 
nanoparticle accumulation at the injection site. Larger tissue porosity is associated with 
larger pore size and larger distance between the cells. The deposition rate coefficient 
decreases substantially with increase in porosity, especially for lower velocities. 

Tissue deformation can significantly affect the transport of nanoparticle during an 
infusion process. First, the particle distribution is not symmetrically spherical due to the 
presence of the needle and tissue deformation. In fact, the tissue on the outer surface of 
the needle recedes under the infusion pressure and forms an annular space. Nanofluid fills 
the annular space and serves as an extra source for nanoparticles to infiltrate through the 
tissue. The length of the backflow is dependent on infusion rates, needle sizes, tissue 
properties [36, 55]. Higher infusion rates yield three consequences: a longer backflow 
length and spreading of the particles along the needle track, a lower deposition rate 
coefficient, and larger tissue porosity near the needle tip. All these contribute to reducing 
particle deposition at the needle tip. As a result, high infusion rates lead to a deeper 
particle penetration and lower particle concentration at the injection site. The relationship 
of the particle penetration depth to the infusion rates observed in this study is consistent 
with previous micro-CT imagining results and measurement of SAR in gels and tissues [3, 
48, 49].  

Needle size is another important parameter in intratumoral infusion. Given the infusion 
rate, it is the needle size that defines the infusion pressure and velocity of the infusate at 
the needle tip. In fact, large-gauge needles that have a smaller diameter result in a higher 
infusion pressure at the needle tip. The elevated infusion pressure causes higher velocity 
and more enlarged pore size near the needle tip, both facilitating particle infiltration into 
tissue. Also, a smaller needle size can cause a shorter backflow length which is more 
favorable in confining therapeutic agents inside of a tumor. It should be noted that the 
reduced needle size only affects an area in the close vicinity of the needle tip and the 
elevated infusion pressure may cause tumor breakage.  

The response of tissue to infusion pressure is largely dependent on the tissue elastic 
properties such as Young’s modulus. Stiffer tissue does not allow substantial swelling of 
the pore. Thereby, more nanoparticles are intercepted by the cellular structure near the 
needle tip. Tissue elastic properties should be considered when selecting infusion 
parameters. Increasing the injection amount can enhance the nanoparticle concentration 
in the tumor. However, most nanoparticles will be confined in the tumor if the leakage 
due to backflow can be minimized.   

Since nanoparticle transport in biological tissue is such a complex issue, a number of 
simplifications were made when developing this multiscale model. One major 
assumption is that the hindrance of extracellular matrix to particle transport is neglected 
when predicting the deposition rate coefficient. Consequently, the prediction made by 
this model may overestimate the particle penetration depth. On the other hand, the effect 
of available binding sites on the cell surfaces is not considered in the model although it 



 

 

 

24

might limit the rate of particle binding to the cell surface [37]. Neglecting the availability 
of the binding sites may cause overestimation of the particle deposition on the cell 
surface. In addition, the physicochemical theory underlying the calculation of particle 
interaction with the cell surface insofar shares the general properties of all colloidal 
particles. However, the interaction of particles with the living cells is of course more 
complex than that of non-living, inert, smooth, and spherical bodies. Besides, the 
complex cellular structure renders the flow path tortuous and the random packing of the 
cells causes some volume fraction inaccessible to nanoparticles. It should also be noted 
that in the currently model, dilute nanofluid is employed and particle agglomeration is not 
considered. It is unclear to what extent the particle-particle interactions affect the particle 
transport, especially when highly concentrated nanofluids are employed. These 
limitations should be addressed in the future through united experimental and theoretical 
study. 

The poroelastic model developed in this study is limited to spherical tumor, homogenous 
media and isotropic deformation. However, nanofluid transport in tumor and the ultimate 
nanofluid distribution are dependent on the heterogeneous and anisotropic tissue 
properties, irregular tumor shape, and cracks and necrotic tissues which are common 
features in large tumors. Also, elevated infusion pressures may break tumors and cause 
the formation of cracks during infusion. These mechanisms should be included in the 
model in future studies.  

Despite the assumptions used in this study, the simulation predicts the penetration depth 
at the same order of magnitude as those obtained through micro-CT imaging [3] and 
indicated by SAR measurements [48, 49], suggesting that the modeling framework 
presented in this study captures the main features of the complex process of nanoparticle 
transport in tissues. A quantitative relationship among fluid flow, tissue deformation, 
nanoparticle deposition, and nanoparticle transport is established and the effects of major 
infusion parameters on nanoparticle distribution are characterized.  

 
7. CONCLUSION 

 
In nanoparticle hyperthermia, controlling the nanoparticle distribution delivered in 
tumors is vital for achieving an optimum distribution of temperature elevations that 
enables a maximum damage of the tumor cells while minimizing the heating in the 
surrounding healthy tissues. A multi-scale model was developed in this study to 
investigate the spatial concentration distribution of nanoparticles in tissues after 
intratumoral infusion. Simulations were performed to quantify the effects tumor 
deformation and particle binding to the cellular structure on the behavior of particle 
transport. The results show that the rate of particle binding to the cell surface can be 
reduced by increasing the interstitial fluid velocity, tissue porosity, and surface charge of 
the particles. Tissue deformation induced by the infusion pressure causes backflow and 
change in tissue porosity near the needle tip, which substantially affects the distribution 
and penetration depth of the nanoparticles. Higher infusion rates, larger needle sizes and 
lower values of Young’s modulus yield longer backflow length. On the other hand, high 
infusion rates, small needle sizes, and low values of Young’s modulus reduce 
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nanoparticle deposition near the injection site. The nanoparticle concentration in tumor 
can be increased if more nanofluid is infused.  

The current study will continue by progressively including further considerations such as 
heterogeneous porous structure, presence and formation of cracks in tumor, and 
correction factors for the deposition rate coefficient to address the limitations of the 
current model. We anticipate that continuous improvement in the model will advance 
design of treatment protocols for large-sized, irregular-shaped tumors using nanoparticle 
hyperthermia.  
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NOMENCLATURE 
 
A potential 
b radius of the fluid shell shown in Fig. 1 
F shape factor in Eq. (8) 
C molar concentration of the particles in the fluid 
ac cell diameter 
dp  particle diameter 
e dilatation 
D  diffusion coefficient 
E Young’s modulus 
F  forces acting on the particle 
G Lamé constants 
h distance between the particle centre and the wall 
I electron charge 
K permeability of the tissue 
kf deposition rate coefficient 
kB Boltzmann’s constant 
m mass 
M material constant in Eq. (6) 
pf fluid pressure  
r displacement of particle 
S volumetric concentration of the nanoparticles bounded to the solid structure 
T absolute temperature 
t time 
u displacement vector of solid structure 
v interstitial fluid velocity vector 
x, y particle position 
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Greek Symbols 
 
γ thickness of the fluid layer 
ε porosity 
ε0 vacuum permittivity/initial porosity 
εr relative dielectric constant of the water 
ξ uniformly distributed random number 
ηs collector efficiency 
θ valence of the electrolyte 
κ Debye-Hückel parameter 
λ Lamé constant 
μ viscosity of the fluid 
ρ density 
τ tortuosity 
υ Poisson ratio 
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