
Journal of Thermal Biology 62 (2016) 109–115
Contents lists available at ScienceDirect
Journal of Thermal Biology
http://d
0306-45

n Corr
E-m
journal homepage: www.elsevier.com/locate/jtherbio
Determination of time of death in forensic science via a 3-D whole
body heat transfer model

Catherine Bartgis, Alexander M. LeBrun, Ronghui Ma, Liang Zhu n

Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
a r t i c l e i n f o

Article history:
Received 10 February 2016
Accepted 5 July 2016
Available online 7 July 2016

Keywords:
Postmortem
Time of death
Temperature
Whole body model
Forensic science
x.doi.org/10.1016/j.jtherbio.2016.07.004
65/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: zliang@umbc.edu (L. Zhu).
a b s t r a c t

This study is focused on developing a whole body heat transfer model to accurately simulate temperature
decay in a body postmortem. The initial steady state temperature field is simulated first and the cal-
culated weighted average body temperature is used to determine the overall heat transfer coefficient at
the skin surface, based on thermal equilibrium before death. The transient temperature field postmortem
is then simulated using the same boundary condition and the temperature decay curves at several body
locations are generated for a time frame of 24 h. For practical purposes, curve fitting techniques are used
to replace the simulations with a proposed exponential formula with an initial time delay. It is shown
that the obtained temperature field in the human body agrees very well with that in the literature. The
proposed exponential formula provides an excellent fit with an R2 value larger than 0.998. For the brain
and internal organ sites, the initial time delay varies from 1.6 to 2.9 h, when the temperature at the
measuring site does not change significantly from its original value. The curve-fitted time constant
provides the measurement window after death to be between 8 h and 31 h if the brain site is used, while
it increases 60–95% at the internal organ site. The time constant is larger when the body is exposed to
colder air, since a person usually wears more clothing when it is cold outside to keep the body warm and
comfortable. We conclude that a one-size-fits-all approach would lead to incorrect estimation of time of
death and it is crucial to generate a database of cooling curves taking into consideration all the important
factors such as body size and shape, environmental conditions, etc., therefore, leading to accurate de-
termination of time of death.

& 2016 Elsevier Ltd. All rights reserved.
1. Background

Determining postmortem interval is vital to the study of for-
ensic science. Knowing the time of a murder can be used to ex-
onerate or incriminate a person of interest. In the past two cen-
turies, multiple approaches have been developed to determine
postmortem interval using biochemical markers as well as physi-
cal measurements. Decomposition stages or insect colonization
have been suggested as an indication of time of death for bodies
found after weeks of being dead. However, due to the uncertainty
of the determined time varying more than days or weeks, a more
accurate method is to rely on physical measurements, including
temperatures at various body locations.

In 1868, Dr. Henry Rainy, a Professor at Glasgow, suggested that
the cooling rate of a dead body could be used to determine time of
death (Crowther and White, 1988). The formula (Eq. (1)) given
below, determines the postmortem interval by having the
pathologist measuring the temperature of the rectum and mod-
eling the temperature decay as a linear function:
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This equation suggests that the cooling rate of the body is ap-
proximately 1.5 °F per hour. Later this equation was modified to
become two linear segments, with the cooling rate as 2 °C per
hour for the first 12 h and 1.5 °C per hour for the second 12 h. The
accuracy of this approach is poor, because the rate at which a body
cools can be affected by various parameters. External air tem-
perature, weather, environment, body size and shape, and initial
body temperature distribution all play important roles in de-
termining the cooling rate (Guharaj, 1982).

Due to mathematical advancements in the 19th century, one
can derive a partial/ordinary differential equation to describe the
body temperature decay process after death. It has been shown
that the heat loss from a warm body to a cold environment is
governed by the Newton's law of cooling, i.e., the heat transfer rate
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from a body is proportional to the temperature difference at the
body surface and the air temperature, as well as the heat transfer
coefficient h that is related to the thermal resistance between the
surface and its environment. For a transient heat transfer process,
a simplified model used is called the “lumped capacitance meth-
od”. The lumped capacitance method assumes that a solid of
uniform temperature is being put into a fluid at a different tem-
perature (Bergman et al., 2011). This uniform temperature in the
solid negates any temperature gradients in the solid. Neglecting
the temperature variation within the solid results in an ordinary
differential equation (ODE) rather than a partial differential
equation for governing the temperature drop, therefore, solving
for the ODE is straight forward as:
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where t is time, T(t) is the temperature of the solid, varying with
time, Tair is air temperature, and Ti is the initial temperature. The
result using the lumped capacity method suggests that the nor-
malized temperature (the left side of Eq. (2)) can be described by
an exponential function with a time constant τ. The time constant,
describing how fast the solid responds to the change of its en-
vironment, is related to its density ρ, specific heat c, solid volume
V, solid surface area A, and the heat transfer coefficient h, de-
scribed in the Newton's law of cooling.

Eq. (3) given in some websites estimates the postmortem in-
terval based on the Newton's law of cooling:
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It is evident that Eq. (3) is almost the same as Eq. (2) except that
the time constant is chosen to be 10 h. Eq. (3) allows determina-
tion of the time of death with only a single temperature mea-
surement at the rectum or liver site if the air temperature Rt is
known. It also assumes that the initial body temperature is 98.6 °F
or 37 °C.

Eq. (3) based on the Newton's law of cooling is an improvement
from the linear temperature decays used previously. This equation
is not accurate since it proposes a time constant τ as ten hours. As
shown in Eq. (2), the time constant can be greatly influenced by
many factors, including the size (volume V), the shape (surface
area A), body composition (density ρ, and specific heat c), and the
heat transfer coefficient h. A more roundly shaped person (large V/
A) has a larger time constant, implying that it is more difficult to
lose heat than a skinnier person (small V/A). The amount of fat a
person carries varies due to the amount of insulation the body has.
If a body is more insulated due to a thicker fat layer, the body
temperature will decay at a slower rate. Further improvement in
extracting time of death takes into consideration the body size,
thermal resistance due to clothes, thermal variations of the en-
vironment, and the possibility that an exponential function alone
is not accurate to describe the temperature decay. One of the more
extensive models for determining the post mortem interval is the
Hessnge's Nomogram (Payne-James et al., 2011), proposing that
the normalized rectum temperature is described by a combination
of two exponential functions with different time constants:
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where Trectum is the temperature of the rectum in Celsius, Tambient is
the temperature of the external environment, t is time in hours,
and B is related to the time constant (B¼�1/τ) and is proposed to
be related to the body mass in kilogram, W:

= − ( ) + ( )−B W1.2815 0.0284 50.625
Note that this formula is only valid for a naked body in still air.
Estimation of the time of death for other situations such as
wearing clothes, being in a moving fluid or in water can also be
determined using a correction factor. For example, when the
personwears 1–2 thin layers of clothes in still air, the correct factor
is 1.1, implying the actual time of death is longer than that esti-
mated by the formula since the clothes slow down the tempera-
ture decay. On the other hand, a naked body in a moving air, the
actual time of death is shorter (a correction factor of 0.75) because
of the easier heat loss due to strong convection. The proposed
formula (Eq. (4)) is more accurate than previous methods since it
takes into account the weight of the body, the ambient tempera-
ture, the speed of moving fluid, and the clothing a person is
wearing. However, it does not take into account the initial stag-
nation of the temperature. Most importantly, this model is also
limited to the user's interpretation of the layers of the clothing.
The researchers simply describe clothing as either thick or thin.
They do not specify the material or the thickness required to be
considered as a “thick material”.

The major limitation of all the previous studies is the rudi-
mentary calculation of the time in the above mentioned simple
formulas. It is well known that a dead body loses heat passively by
radiation, conduction, and convection to its environment. There
are many factors that may influence the three mechanisms, in-
cluding the size and shape of the body, obesity, heavy clothing, air
is moving or still, exposure to direct sunlight, to name a few. An-
other important issue none of the above studies considered is the
body location where the temperature is recorded. It will be very
practical to measure the body temperature only once. However, as
mentioned above, it is difficult to determine with confidence that
one or two measurements of temperature at the same site are
sufficient to address all the influencing factors. In another word,
without a more rigorous theoretical simulation considering all the
factors, it is almost impossible to determine the exact time of
death, leading to an erroneous estimation.

This study focuses on developing a whole body heat transfer
model to simulate rigorously not only the time decay after death,
but also the temperature distribution of the body before death.
Although some finite element models were proposed, the initial
condition is either assumed as a constant and uniform tempera-
ture of 37 °C or based on an inaccurate temperature distribution
estimation (Mall and Eisenmenger, 2004a, 2004b). In addition, the
convection/radiation coefficient between the body and the en-
vironment is roughly estimated. It is unknown how they de-
termine the values for individual cases in those previous studies.

In this study, we develop a whole body physical model based
on actual measurements of a human body and to use energy
balance between local blood perfusion rate and surrounding tissue
to determine a lumped “overall heat transfer coefficient”, modeling
the total thermal resistance of conduction (clothing layers), con-
vection (moving or still air), and radiation (radiation exchange
with the surroundings) when the human body is in thermal
equilibrium with its surrounding. The obtained initial temperature
field is then substituted into the model to simulate the tempera-
ture decay processes at various body measurement sites (internal
organ, brain, etc.). For practical use, we also preform curve fitting
to a proposed temperature decay formula to identify the time
constant and the initial time delay in the proposed temperature
cooling curve formula. It is expected that the temperature cooling
curve formula would be used to accurately determine the time of
death based on one or two measurements of the temperatures at
specific body sites.
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Fig. 1. Developed 3-D whole body heat transfer model in the z-x plane.

Fig. 2. Schematic diagram of the thermal resistance network between the skin
surface of the body and the environment.
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2. Methods

2.1. Mathematical formulation of the whole body model

Heat transfer from a human body after death to its environ-
ment relies on thermal resistance of conduction, convection, and
radiation on the skin surface. The postmortem temperature decay
in a human body can also be affected by the initial non-uniform
temperature field before death. In this study, a whole body heat
transfer model is developed to solve for the steady state tem-
perature field to accurately determine the initial condition before
death and quantification of the thermal resistance between the
skin and the environment. The Pennes bioheat equation (Pennes,
1948) is implemented to the generated whole body model to de-
termine an appropriate initial temperature distribution in the
body. The thermal resistance between the skin and the environ-
ment is modeled by an overall heat transfer coefficient. Via ad-
justing the overall heat transfer coefficient in the model, one can
determine a weighted average temperature of the human body to
satisfy the energy balance between the human tissue and the
blood circulation in the body. From this initial temperature dis-
tribution we are able to accurately determine the temperature
decay curves presented in later sections.

The whole body model developed in this study is based on a
female having a height of 1.68 m and a weight of 68 kg. The body is
composed of five main sections: legs, arms, neck, torso, and head,
as shown in Fig. 1. The head is modeled as a sphere, the legs, arms,
and neck as cylinders, and the torso as a rectangular prism. For
each section, a layer of skin, a layer of fat, and a region of muscle
are the major components. For the head, there is a thin muscle
region, and most of the head is composed of brain tissue with a
very high metabolism and a large blood perfusion rate. In the
torso, the internal organs are modeled as an embedded rectan-
gular region that also has higher metabolism and blood perfusion
rate than that of muscle. Each tissue region is given proper
Table 1
Material properties of different layers.

Material Skin Fat Muscle Brain Internal organs

k (W/m K) 0.47 0.21 0.642 0.49 0.592
ρ (kg/m3) 1085 900 1000 1080 1000
cp (J/kg) 3680 3500 3500 3850 3500
physical properties such as the density ρ, thermal conductivity k,
and specific heat cp, listed in Table 1. All properties are obtained
from previous studies (Smart and, Kaliszan, 2010; Erdmann et al.,
2006).

The Pennes bioheat equation (Pennes, 1948) is used as the
governing equation determining the steady state temperature field
in the modeled human body. It is a modification from the tradi-
tional heat conduction equation with an extra source/sink term
describing the thermal effect of local blood perfusion. The Pennes
bioheat equation is given below:

ρ ωρ
∂
∂

= ∇( ∇ ) + ( − ) + ′′ ( )
′c

T
t

k T c T T q 6t t
t

t t a a a t m

where subscript t denotes tissue, subscript a denotes the arterial
blood circulating in the body. At each tissue region, t will be re-
placed by skin, or fat, or muscle, etc. ′′′qm is the volumetric heat
generation rate due to metabolism. The thermal effect of the local
blood perfusion rate ω is modeled as either a heat sink or source,
depending on whether the local tissue temperature Tt is higher or
lower than the arterial temperature Ta. In the Pennes bioheat
equation, the arterial temperature Ta is considered a constant over
the entire body, and may only change with time. Therefore, during
a steady state, Ta is a constant such as 37 °C. In tissue region such
as the internal organs or the brain, the local tissue temperature is
usually higher than 37 °C, therefore, the arterial blood acts as a
heat sink there, while in tissue regions such as fingers and toes, it
acts as a heat source to warm up those regions. The strength of the
blood perfusion term is also proportional to the local blood per-
fusion rate, the density, and specific heat of blood. The strength of
the metabolic heat generation rate is usually considered coupled
with the local blood perfusion rate.

How easy to cool a body relies on thermal resistance between
the skin surface and the environment (air or water). Layers of
clothing a person wears are considered as the conduction re-
sistance. The convection resistance from the outer surface of the
clothing to the moving air or water is described by the Newton's
law of cooling as 1/(hA). Based on the Stefen-Boltzman's law, the
equivalent radiation resistance can be 1/(hrA). Combining the three
resistances shown in Fig. 2 and assuming that Tenv¼Tair, one can
lump them into a single resistance 1/(UA), where U is the overall
heat transfer coefficient describing thermal barrier between the
skin and the air, and A is surface area of the body. The boundary
condition at the skin surface of the body is then formulated as:
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2.2. Determination of the overall heat transfer coefficient, U

Unlike that in previous studies where the thermal resistances
due to conduction, convection, and radiation are calculated based
on specific environmental conditions, air speed, shape of the body,
clothing material and thickness, the thermal resistance in this
study is determined based on the achieved thermal equilibrium
between the body and its environment (Zhu, 2009). We will utilize
the determined temperature field from the Pennes bioheat equa-
tion at steady state. The hypothesis here is that the person would
have proper clothing, move under the sun or in shade, etc., so that
he/she feels thermally comfortable. It implies that the body core
temperature should not change when the body establishes a
thermal equilibrium with the environment. One thing to achieve
equilibrium is the energy balance between blood and tissue in a
human body. As mentioned previously, the arterial blood leaves
the heart to circulate the body, and exchanges heat with the local
tissue. Depending on whether the arterial temperature is higher or
lower than the local tissue, the blood loses heat to tissue in regions
such as the limbs and muscle, while it gains heat from tissue in
regions such as the head and internal organs. When the arterial
blood returns back to the heart, its temperature should be the
same as that when it leaves the heart, therefore the total energy
exchange between the arterial blood and tissue in the body should
be zero (Zhu et al., 2009; Zhu, 2010; Paul et al., 2015).

Examining the Pennes bioheat equation, one notes that the
blood perfusion term gives the volumetric heat generation rate.
Integrating the blood perfusion term over the entire body volume
V yields:

∭ ωρ ( − ) = ( )c T T dV 0 at steady state 8V
p a t

The integration is zero during steady state when the body es-
tablishes thermal equilibrium with its surrounding. Rearranging
the above equation yields:

∭ ∭ωρ ωρ= ( )c T dV c T dV at steady state 9V
p a

V
p t

Since the arterial blood temperature Ta is assumed as a con-
stant of 37 °C, the equation can be further simplified and a
weighted average tissue temperature of the whole body, Tt , can be
expressed as:

∭
∭
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ω
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( )
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dV 10
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V

The value of U is adjusted so that a weighted average tem-
perature of the body equals the arterial temperature at 37 °C,
when the body establishes a thermal equilibrium with the en-
vironment. The arterial temperature Ta is selected as 37 °C, re-
presenting normal conditions of a human body. The overall heat
transfer coefficient U is initially assumed as 5 W/m2 K (Dear et al.,
1997) to start the simulation of the steady state temperature field.
If the weighted temperature Tt is higher than 37 °C, it implies that
the previously selected value for U is too small. On the other hand,
if Tt is lower than 37 °C, the previously selected U value is too large.
The overall heat transfer coefficient U is either increased or de-
creased by an increment of 0.1 W/m2 K, one then repeats the
above procedures, until the deviation between Tt and Ta is less
than a threshold of 0.01 °C.

The obtained steady state temperature field is used as the in-
itial condition for the transient temperature simulation of the
temperature decay after death. The determined overall heat
transfer coefficient to achieve a thermal equilibrium with its sur-
rounding is also used to model the thermal resistance after death,
assuming that the person is not added or taken off clothes after
death and the environment is the same as that before he/she is
“killed”.

2.3. Postmortem simulation of temperature decay and curve fitting

The human body modeled in the previous section to calculate
the overall heat transfer coefficient, U, is also used in this section
to determine the temperature decay in the transient process post
mortem. The governing heat transfer equation for the “dead” body
reduces to the following:

ρ
∂
∂

= ∇( ∇ ) ( )c
T
t

k T 11t t
t

t t

Notice that both the blood perfusion term and the metabolic
heat generation rate term vanish in Eq. (11) to simulate post
mortem, from the original Pennes bioheat equation. Again, the
body consists of regions of skin, fat, muscle, brain, and internal
organs. The boundary conditions applied to the transient model
are the same as that in the steady state model, shown in the fol-
lowing equation.
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where U is again the overall heat transfer coefficient, the same as
that in Section 2.1.

Analytical solutions for typical heat transfer processes suggest
that the exponential function behaviors describe the dimension-
less or normalized temperature. Therefore, we propose a formula
shown below to model the temperature decay at any tissue loca-
tion, based on our preliminary studies (Bartgis, 2015):

⎧
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where t is the time, Θ(t) is the normalized temperature at a lo-
cation, Tair is the environmental temperature, Tinitial is the initial
temperature at the same specific location. The temperature is
normalized so that Θ only varies between 1, when time is zero,
and 0, when time is infinite. Based on our preliminary study, one
finds that there is an initial period of tdelay, when the temperature
at the tissue location is almost unchanged from its initial tem-
perature Tinitial. After tdelay, the temperature decay is proposed to
follow an exponential function. As mentioned previously, repla-
cing the temperature decay curve by a proposed formula of tem-
perature drop is for practical use in crime scene investigations,
since only one or two measurements are needed to be taken at a
specific body location by the detective. The measurements can be
used to determine the time of death t based on the temperature
measurements, once the coefficients appearing in Eq. (13), such as
tdelay and τ are known.

The simulated transient temperature decay at either the brain
or abdominal location is exported to an Excel file and it is nor-
malized based on the definition of Θ, shown on the left side of Eq.
(13). The adjustable parameters here are tdelay and τ. Their values
are guessed first, although the final fitted values should not be
dependent on the initial guesses. The objective function for
minimization based on the least square residue fit is defined as:

( )∑ Θ Θ= −
( )=

objective function
14i

n

actual i curve i
1

, ,
2

where n is the number of the total time steps of the simulation of
the temperature decays, Θactual is the normalized temperature
decay imported to Excel from the 3-D temperature field simula-
tions, whileΘcurve is the normalized temperature values calculated



Fig. 3. Cross sectional contours of the initial steady state temperature field for
Tair¼10 °C and Tair¼30 °C.

Fig. 4. Temperature contours in the body at various time instants after death.
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from the proposed temperature decay curve in Eq. (13). Typical
optimization processes require that an objective function similar
to Eq. (13) is minimized via adjusting the coefficients tdelay and τ.
In this study, we use the Microsoft Excel 2010 data solver for curve
fitting. Excel data solver used the GRG Nonlinear Solving Method
for nonlinear optimization. This method works by using the
Generalized Reduced Gradient (GRG2) code to find the optimal
minimum or maximum value of the objective cell. The decision
cells are varied in the code until the objective cell is optimized.

It is expected that all the coefficients in Eq. (13) depend on
body size and type, the environmental condition, and measure-
ment locations. In another word, a one-size-fits-all set of the
coefficients will not be accurate. In this study, we would like to test
the proof of principle of the approach while extracting two sets of
the coefficients only at the brain and internal organ locations for a
specified environmental condition. The environmental air tem-
perature is then changed to show how the change in air tem-
perature affects the values of the coefficients. All curve fitting re-
sults are presented in the next section.
Fig. 5. Typical temperature transients at three body locations: the internal organ,
the brain, and the skin surface of the arm.
2.4. Numerical simulation using COMSOL

Numerical simulation of the temperature field is carried out by
COMSOL 4.2 using finite element methods. Meshing has been
generated by COMSOL. A total of 2,326,378 elements are used, and
the elements are smaller in the skin and fat layers due to their
small thicknesses. The sensitivity of the simulation to element
sizes has been tested. When the number of the elements increases
by 100%, it results in a less than 1% change in the maximal tem-
perature in the simulated domain.
Table 2
The overall heat transfer coefficient U under different air temperatures and the
calculated weighted average body temperature, Tt .

Tair (°C) U (W/m2 °C) Tt

10 1.2 37.00
12 1.25 37.01
15 1.5 37.00
18 1.75 37.00
20 2 37.00
22 2.25 37.00
25 3 36.99
28 4 37.00
30 5.5 37.00
3. Results

3.1. Steady state temperature field

In this study, the steady state temperature field in the human
body is simulated when the body is exposed to one of the nine
different air temperatures: 10°C, 12°C, 15°C, 18°C, 20°C, 22°C, 25°C,
28°C, and 30°C. For each air temperature, a value of the overall
heat transfer coefficient U is calculated. We make the assumption
that the person is thermally comfortable in their environment at
the time of death, therefore, the average temperature across the
body should be 37°C. Fig. 3 shows the initial temperature fields
when the body is exposed to either very cold air (10°C) or very hot
air (30°C). The figure provides a cross sectional temperature field
for both air temperatures, the hottest temperature in the body is
located in the internal organs and the brain, and is approximately
37.3°C, 0.3°C higher than the prescribed arterial blood of 37°C. The
temperature is slightly lower in the muscle regions and is the
lowest in the skin region. The steady state temperature field agrees
very well with previous simulations in the literatures (Huizenda
et al., 2001; Moller, 1990; Neilsen et al., 2000; Wang and Zhu,
2007).



Fig. 6. The initial time delay tdelay determined from curve fitting and its depen-
dence on the air temperature and body location.
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It is expected that the external air temperature, Tair, does not
have a significant effect on the temperature field of the body, since
the overall heat transfer coefficient U is adjusted to ensure that the
person wears appropriate clothing to feel thermally comfortable.
The overall heat transfer coefficients are given in Table 2. A smaller
U associated with cold air temperature situations implies that the
person wearing more clothing. When the air temperature de-
creases from 30°C to 10°C, the overall heat transfer coefficient
decreases almost 80% from 5.5 to 1.2 W/m2 °C, suggesting that the
thermal resistance increases more than 350%.

3.2. Temperature distribution transients postmortem

Using the initial temperature field obtained in the steady state
model, one simulates the temperature field changes after the
person is dead. Fig. 4 provides temperature contours of the body in
the middle section several hours after the death when the body is
exposed to an air temperature of 20 °C. One can see that the ex-
tremities cool at the most rapid rate, followed by the head, and the
internal organs cool the slowest among all the body regions. After
approximately 24 h the only noticeable temperatures above the air
temperature are located in the internal organs. This is reasonable
since the internal organs have the smallest surface area to volume
ratio. Body regions such as the arms have a very high surface area
to volume ratio and they start at a temperature lower than 37 °C.
Fig. 7. Effects of the air temperature and body location on the determined time
constant.
The arms therefore, establish thermal equilibrium with the en-
vironment within 10 h. The deep brain region has a temperature
very similar to that in the internal organ before death; however,
due to the small size of the head, its temperature decays faster
than that of the internal organs.

Three body locations are selected to display their temperature
cooling curve after death including the surface of the arm, the
center of internal organs, and the center of the brain. The three
decay curves for Tair¼20 °C are given in Fig. 5. The temperature
decay on the arm skin looks like a typical exponential decay.
However, at the center of the internal organs and at the center of
the brain, there is a noticeable time delay before the temperature
starts to decay exponentially. The initial time delay at the center of
the brain is shorter than that at the center of the internal organs.
The location at the skin surface of the arm is not suitable for de-
termining the time of death since its initial temperature before
death can be significantly affected by various factors, while both
the internal organs and brain almost always starts with a certain
37.3 °C, 0.3 °C higher than the arterial blood temperature. Even
after 24 h, the temperature at the internal organs is still 9 °C above
the environmental temperature, while the temperature in deep
brain is approximately 5 °C above Tair. The simulation results de-
monstrate that the internal organ is a better location than the
brain for determining time of death, especially when more than
24 h have passed after the death.

The R2 values of all the curve fittings are larger than 0.998
when Eq. (13) is used to fit the simulation curves, implying ex-
cellent curve fitting. The fitted curve for the temperature decay at
the brain location when the body exposed to 20 °C air after death
is expressed as:
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This formula can be very useful for the detective to determine
the time of death with a single temperature measurement at the
internal organ location. For example, if the measured temperature
is 32 °C, and Tair¼20 °C, based on the formula, the time when the
measurement is taken can be easily solved as 31,075 s or 8.6 h.

The effect of the air temperature on the cooling curve is illu-
strated in Figs. 6 and 7, when the temperature measurement is
taken at either the brain location or the internal organ location. At
the head center, the fitted tdelay varies slightly around 1.6 h for all
the air temperatures, while tdelay is longer at the center of the
internal organs, varying from 2.4 to 2.9 h. There are almost 1.6–
2.9 h when the temperature does not change significantly from the
initial 37.3 °C at the measurement site. Therefore, it would not be
very accurate to determine the time of death within this initial
window. Fig. 7 gives the time constant of the exponential function
for the brain location, varying from 28,930 s (�8 h) for Tair¼30 °C
to 112,465 s (�31 h) for Tair¼10 °C. The time constant provides
the measurement window after death to be between 8 h to 31 h,
depending on the air temperature. Similarly, the trends at the
internal organ location are very similar to that at the brain loca-
tion. It would have taken much longer time to cool down the torso
than the brain. When the air temperature is 10 °C, the time con-
stant for the internal organ location is 64% longer than that for the
brain location, while the time constant at the internal organ site
doubles that at the brain site when the air temperature is 30 °C.
The results in Fig. 7 suggest that the measurement window after
death at the internal organ location is approximately between 16 h
and 51 h, depending on the air temperature. The time constant is
longer when the body is exposed to colder air. Note that a person
usually wears more clothing when it is colder outside to keep the
body warm and comfortable. Assuming that after death, the body
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has the same clothing as that before the death, the larger thermal
resistance due to clothing in colder air would slow down heat
conduction from the body core to the skin, leading to a slower
cooling rate of the body.
4. Discussion

The presumed time of death in criminal justice is often used to
implicate or exonerate a person of interest. The typical practice
substitutes a temperature measured at a body site at the scene into
a simple formula to roughly estimate the time of death. The de-
veloped whole body heat transfer model in this study is the first
attempt to address some, however, not all of the limitations of the
formulae currently used in practices, namely, the inaccuracy of the
estimation of the overall heat transfer coefficient and lack of de-
scription of thermal effects of body shape and/or size on the
postmortem prediction. It still has many limitations that should be
addressed in the future to make the prediction of time of death
within an acceptable range.

This research only generates one body model based on a female
body with European decent. It is well known that the size and
shape of the body should have profound influence on the initial
temperature field of the body, and the cooling process after death.
Therefore, it is unlikely that the generated cooling curves in the
study can be readily applied to other body shapes and sizes.
Therefore, similar efforts have to be continued to develop more
body models based on a variety of the shapes and sizes. In addi-
tion, there are significant tissue structural differences between a
female body and a male body. Women tend to sweat less and have
a thicker fat layer while men typically have a higher metabolic
heat rate (Spieker et al., 1999). Women also carry more of their
weight in their hips and chest where men tend to carry more of
their weight in their gut. The placement of extra fat or muscle
could lead to differences in the temperature decay curve. A body
with the internal organ volume but a fat layer twice the thickness
will have more insulation, in theory slowing heat transfer from the
internal organs. The same may happen with a body with a muscle
layer twice the size of the model used in this study. Height, fitness,
ethnicity, and gender, all play significant roles in the shape of the
body. Studies have shown that Asians typically have a lower body
mass index than Europeans (Wang et al., 1994). It is very important
to also take those factors into considerations when one models
other types of bodies.

With advancement in computational resources, the whole body
model can be further improved via including more structures
within the geometry. For example, the bones inside a body have
different thermal properties from that of muscle or fat. Due to
their significant portion in a human body, future studies may be
needed to evaluate whether including them would have sig-
nificantly changed the cooling time of those cooling curves. The
internal organs in this study are also modeled as one large clump.
It would have been more accurate to model internal organs in-
dividually since their blood perfusion rates and metabolic rates are
quite different from each other. Future studies are needed to un-
derstand whether separation of the internal organs would affect
the results and help pinpoint which internal organ location is the
best for temperature measurement and determination of time of
death.

In the current model, one assumes that the person is wearing
appropriate clothing for the environment they are in, and the
environmental air temperature is kept the same postmortem. In
reality, the body could have been moved from inside to outside,
the external air temperature may change after death, and the
person's clothes could be removed/added. In future studies the
model could be modified to account for the non-uniform air
temperature variation for the simulation duration, brief raining or
snow conditions after death implying change of environment so
that the overall heat transfer coefficient should be re-calculated for
the transient temperature decay simulations. Other details can be
added to the model, including whether the person is lying on the
floor, grass, sitting on the chair, therefore, leading to more realistic
and more accurate predictions of the cooling processes of a body.

In summary, we have articulated the limitations of current
practices of determining postmortem interval in practice, and
elaborated the rationales of simulating temperature cooling curves
based on development of a rigorous 3-D whole body heat transfer
model. The results given in this study has demonstrated the ac-
curacy of determining the overall heat transfer coefficient or the
thermal resistance between the skin and air via an indirect ap-
proach assuming thermal equilibrium. The curve fitting techniques
used in this study have been tested to understand how air tem-
perature affects the overall heat transfer coefficient, the initial
time delay, and the time constant associated with the body
cooling.
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